赞
踩
for执行次数不跟据输入而改变。
torch.jit.script
例如:
class LoopAdd(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
h = x
for i in range(x.size(0)):
h = h + 1
return h
input_1 = torch.ones(3, 16)
model = LoopAdd()
traced_model = torch.jit.trace(model, (input_1, ))
print(traced_model.graph)
graph(%self : __torch__.LoopAdd,
%x : Float(3, 16, strides=[16, 1], requires_grad=0, device=cpu)):
%7 : Long(requires_grad=0, device=cpu) = prim::Constant[value={1}]() # /home/mark.yj/GPT-SoVITS/b.py:8:0
%8 : int = prim::Constant[value=1]() # /home/mark.yj/GPT-SoVITS/b.py:8:0
%h.1 : Float(3, 16, strides=[16, 1], requires_grad=0, device=cpu) = aten::add(%x, %7, %8) # /home/mark.yj/GPT-SoVITS/b.py:8:0
%10 : Long(requires_grad=0, device=cpu) = prim::Constant[value={1}]() # /home/mark.yj/GPT-SoVITS/b.py:8:0
%11 : int = prim::Constant[value=1]() # /home/mark.yj/GPT-SoVITS/b.py:8:0
%h : Float(3, 16, strides=[16, 1], requires_grad=0, device=cpu) = aten::add(%h.1, %10, %11) # /home/mark.yj/GPT-SoVITS/b.py:8:0
%13 : Long(requires_grad=0, device=cpu) = prim::Constant[value={1}]() # /home/mark.yj/GPT-SoVITS/b.py:8:0
%14 : int = prim::Constant[value=1]() # /home/mark.yj/GPT-SoVITS/b.py:8:0
%15 : Float(3, 16, strides=[16, 1], requires_grad=0, device=cpu) = aten::add(%h, %13, %14) # /home/mark.yj/GPT-SoVITS/b.py:8:0
return (%15)
改造后:
class LoopAdd(torch.jit.ScriptModule):
def __init__(self):
super().__init__()
@torch.jit.script_method
def forward(self, x):
h = x
for i in range(x.size(0)):
h = h + 1
return h
input_1 = torch.ones(3, 16)
model = LoopAdd()
traced_model = torch.jit.trace(model, (input_1, ))
print(traced_model.graph)
graph(%self : __torch__.LoopAdd,
%x.1 : Tensor):
%8 : bool = prim::Constant[value=1]() # /home/mark.yj/GPT-SoVITS/b.py:18:8
%4 : int = prim::Constant[value=0]() # /home/mark.yj/GPT-SoVITS/b.py:18:30
%11 : int = prim::Constant[value=1]() # /home/mark.yj/GPT-SoVITS/b.py:19:20
%5 : int = aten::size(%x.1, %4) # /home/mark.yj/GPT-SoVITS/b.py:18:23
%h : Tensor = prim::Loop(%5, %8, %x.1) # /home/mark.yj/GPT-SoVITS/b.py:18:8
block0(%i : int, %h.9 : Tensor):
%h.3 : Tensor = aten::add(%h.9, %11, %11) # /home/mark.yj/GPT-SoVITS/b.py:19:16
-> (%8, %h.3)
return (%h)
可以看到 prim::Loop
,说明不再是固定参数的静态图了。
将模型转换为 torch.jit.ScriptModule
使用 torch.jit.trace_module() 跟踪模型并输入样本
使用 torch.onnx.export() 导出 ONNX 模型
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。