当前位置:   article > 正文

k互近邻算法 rerank

rerank

建议读者手中有re-ranking的代码,或者看过某个行人充实别的代码。

一,re-ranking大致流程:

   re-ranking是一个图像检索问题,给定一个probe,要从图片集gallery中找出与它相似的图片。如:

既然是检索问题,那么ranking前得到的ranking list就很重要,ranking list有没有使用某些算法得到,这有着很大区别,如下图:

L是没有用算法的ranking list,可以看到AP只有9.05%,准确率非常低,而用了算法的ranking list则可以达到51.98%。所以可以说 re-ranking 是高度依赖ranking list 的质量的。

那之前获取ranking list的算法有哪些呢?

这里主要叫一个 k-nearest neighbors (k近邻)算法。顾名思义,就是从gallery中选择与probe最相似的前k个嘛。

按理来说 ,这种方法应该效果挺好的,但实验中证明,获得k近邻时,很有可能有false match的噪音数据参杂进这个ranking list中,如下图:

其中P1,P2,P3,P4都为true match,但却没有全在比较前的位置,false match中的N1,N2却排到了一个比较靠前的位置,因此就引出了今天要讲的算法 k-reciprocal nearest neighbor(k相互近邻)算法。

 

二,k-reciprocal nearest neighbor 算法

这个算法的思路就是:如果两张图片A,B相似,那么B应该会在A的前K个近邻里面,反过来,A也会在B的前K个近邻里面。但如果两张图C,D不相似,即使C在D的前K个近邻里面,D也不会在C的前K个近邻里面。如下图:

那么这个k-reciprocal nearest neighbor算法主要的过程是怎么实现呢?

假设我们有一个图片probe p,和图片集gallery g:

我们首先要计算 p 和所有 g 中的图片的马氏距离 杰卡德距离(jaccard distance)。

其中马氏距离用于获得 initial ranking list,杰卡德距离用于获得 k-reciprocal 的 ranking list。

马氏距离好理解,它可以看作是忽略了量纲的欧式距离。

(马氏距离与欧式距离,余弦距离的关系可看这个博客:https://blog.csdn.net/u014453898/article/details/98657357

杰卡德距离就要稍微讲一下了:

2.1杰卡德(jaccard)距离是什么?

杰卡德(jaccard)距离的公式是:

其中R,R星,p,k是什么呢,我们一一来看:

gi 为 gallery集中的图片。p为probe。

R是符合 k-reciprocal nearest neighbors 的图片集合,注意它是一个集合,可以定义为:(而R星只是做了扩展的R,等下会说)

这里又出现了N,那我们看看,既然R是符合k相互近邻的图片集合,那N就是K近邻的图片集合嘛,N定义如下:

(|N(p,k)|表示N中候选图片的数目)

那么到这里,我们看回R的定义公式就可以很清楚地看到,R(p,k)是以p作为probe,在gallery图片集中,能与p能有k相互近邻的图片集合

根据前面的描述,k-reciprocal nearest neighbors(K相互近邻)比k-nearest neighbors(K近邻)  和probe p更相关。然而,由于照明姿态视图遮挡的变化,正样本图像可能被从k-nearest neighbors中排除,并且随后不被包括在k-reciprocal nearest neighbors中。为了解决这个问题,我们根据以下条件将R(p,k)中每个候选项的1/2 k-reciprocal nearest neighbors增量地添加到更鲁棒的集合R*(p,k)中:

稍微通俗讲一下,这个R星的形成公式:

我们已经知道R(p,k)是一个集合,里面全是gallery中符合p的k-reciprocal nearest neighbors(K相互近邻)的图片gi

然后我们现在要做的就是遍历这些gi,每一个拿出来就是q,然后我们再用这个q作为新的probe,在gallery图片集里做k变成原来一半的k-reciprocal nearest neighbors 得到R(q,1/2k),若R(p,k)R(q,1/2k)的交集中的图片数大于等于2/3乘R(q,1/2k)中的图片数目的话,就把R(p,k)R(q,1/2k)的并集作为R星(p,k)

下面用一个比较距离的例子来呈现R星的形成:

首先Q作为probe,蓝色框即为Q的k-reciprocal nearest neighbors(K相互近邻)集R(Q,20)R(Q,20)中的C单独拿出来作为q,同时K减一半,即K = 20/2 = 10,所以第二行即为R(C,10)R(Q,20)与R(C,10)的的并集(即相同的图片)数为2,而R(C,10)的个数为3。 2/3 乘 3 = 2 ,符合R星(Q,20)就为R(Q,20)与R(C,10)的交集。(第三行)。

知道R星是什么,就不难看懂杰卡德(jaccard)距离了:

改造杰卡德(jaccard)距离            

然而,这样的杰卡德(jaccard)距离还是有缺点的:

1.取交集和并集的操作非常耗时间,尤其是在需要计算所有图像对的情况下。一个可选方式是将近邻集编码为一个等价的但是更简单的向量,以减少计算复杂度。

2.这种距离计算方法将所有的近邻样本都认为是同等重要的,而实际上,距离更接近于probe的更可能是正样本。因此,根据原始的距离将大的权值分配给较近的样本这一做法是合理的。

3.为了得到鲁棒的距离度量,结合原始距离和Jaccard距离是有必要的。

为了克服上述缺点,我们开始改造Jaccard距离。首先,将k-reciprocal nearest neighbors(缩写k-rnn)集合编码为N维的二值向量=,其中每个元素由以下指示函数定义:

接着,为了给每一个元素根据原始距离来重新分配权值,我们采用了高斯核。于是将向量改写为:

于是,计算Jaccard距离时用到的交集和并集的基数就改写为:

最后,我们终于得到了改造过的Jaccard距离:

2.2 k-reciprocal nearest neighbor 算法与马氏距离和杰卡德距离

从上图可以看出,在Feature Extraction(特征提取)阶段,灰色的是提取probe p和gallery中每张图片各自的外观特征(这用需要做re ranking的神经网络来完成),绿色的是提取probe p与gallery中每张图片的K-reciprocal特征V,公式是上述的Vp,g公式。灰色特征形成马氏距离后,就可以作为原始距离(intial distance),绿色则作为杰卡德(jaccard)距离,然后两个距离聚合在一起就成了最终距离(final distance),final distance可以用于最终的ranking list。到这整个流程就完成了。

距离聚合公式:(入是自己手动设置的)

 

三,代码讲解部分

3.1 在输入re-ranking代码前,作的一些预处理

首先用到的网络(用于提取图片外观特征的网络)是Mutiple Granularity Network(MGN),数据集是Market-1501。

在讲re-ranking代码之前,先说说MGN,MGN是把每张图片都处理成一个(1x2048)的向量来代替原来的图片

re-ranking部分用到数据集Market-1501的两个文件夹如下图:

bounding_box_test作为gallery图片集,一共19733张,但是里面有些图片id是-1的,MGN舍弃了这部分,所以真正读入的图片为15914张。所以gallery的图片数就是15914。

query则是作为probe,只不过里面有很多个probe,一共3369张。

在进入re-ranking代码前:

预处理先对 query 和 gallery 进行特征提取,注意这里不是一张张提取,而是整个集合的图片一起提取特征,所以输出的是一个大矩阵。

用MGN提取query的特征,由于一张图片会转换成1x2048的向量,所以拥有3369张图片的query的特征就是3369x2048的矩阵。(用qf表示这个矩阵)

同理用MGN提取gallery的特征,得到15914x2048的矩阵。(用gf表示这个矩阵)

特征提取的代码如下:

大家只要关注红框处就行,红框处给每个表示图片的向量做了向量的单位化!!!这个很重要!单位化后的向量的模就为1。

这个很重要的原因是,提取了qf和gf之后,就开始算马氏距离了,但是代码不是用马氏距离的公式来算马氏距离,而是使用了一个小技巧,用余弦距离来算马氏距离,为什么可以这样子呢,参考链接:https://blog.csdn.net/u014453898/article/details/98657357

余弦距离为:

当两向量的模为1时,向量相乘的积就是它们的余弦距离。并且MGN在读入数据集时,就应该做过标准化了,因此数据的均值为0,标准差为1,这种情况下,马氏距离又等于欧式距离,余弦距离与欧式距离有转换公式,所以马氏距离可以用余弦距离表示:

因此可以通过qfgf两个矩阵相乘得到两个矩阵的余弦距离:

上面四条代码:

q_g_dist 表示:qf 和 gf的余弦距离。维度3369x15914,表示3329张probe和各自15914张gallery的余弦距离。

q_q_dist 表示:qf自己的余弦距离。维度为3369x3369,表示每张probe 和 其他probe的余弦距离。

g_g_dist 表示:gf自己的余弦距离。维度为15914x15914,表示每张gallery和 其他gallery的余弦距离。

最后一条代码:把三个距离矩阵送入re_ranking() 做k-reciprocal nearest neighbors的re-ranking

3.3 k-reciprocal nearest neighbors的re-ranking代码解析 :

re_ranking()函数的输入参数为3个距离矩阵。和一些默认的参数:

下面re-ranking的代码分三部分讲:

第一部分代码:

函数的第一步,是作3个距离矩阵的聚合:

简写q_g_dist 为 qq,则得到的 original_dist 矩阵如下:

original_dist的维度是 :(3369+15914)x(3369+15914) = 19283 x 19283

19283 是 query 和 gallery 加起来的总图片数目。

所以original_dist 矩阵表示的是,全部图片各自与其他图片的余弦距离。

然后:就做余弦距离转马氏距离的操作:

 #这里代码少了一个平方根,应该不影响效果

转换完马氏距离后,就做了一个归一化,把每列最大数max的找出来,然后让该列的全部成员除max,再转置:(此时的矩阵就不再对称了)

original_dist = np.transpose(1. * original_dist/np.max(original_dist,axis = 0)) #归一化
   
   
  • 1

解下来,就开始定义V了,V矩阵的维度和original_dist 一样,初始化为全0。

还记得V是什么吗?V是算出杰卡德(jaccard)距离的一个中间变量啊:

但代码这里只是先初始下 一下V,还没进行真正的操作,接下来是用original_dist 矩阵来弄出 initial rank,就是原始排列:

initial_rank = np.argpartition( original_dist, range(1,k1+1) )
   
   
  • 1

作用从对original_dist的每行从小到大进行排列,排前k1个(k1=20),返回的是索引号,但是original_dist维度是没有变的:

排序号之后,就成 intial_rank 了。

接着有一个大循环:


   
   
  1. query_num = q_g_dist.shape[ 0]
  2. all_num = original_dist.shape[ 0]
  3. for i in range(all_num):
  4. # k-reciprocal neighbors
  5. k_reciprocal_index = k_reciprocal_neigh( initial_rank, i, k1) #取出互相是前20的
  6. k_reciprocal_expansion_index = k_reciprocal_index
  7. for j in range(len(k_reciprocal_index)): #遍历与第i张图片互相是前20的每张图片
  8. candidate = k_reciprocal_index[j]
  9. candidate_k_reciprocal_index = k_reciprocal_neigh( initial_rank, candidate, int(np.around(k1/ 2)))
  10. if len(np.intersect1d(candidate_k_reciprocal_index,k_reciprocal_index))> 2./ 3*len(candidate_k_reciprocal_index):
  11. k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index,candidate_k_reciprocal_index)
  12. #增广k_reciprocal_neigh数据,形成k_reciprocal_expansion_index
  13. k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) #避免重复,并从小到大排序
  14. weight = np.exp(-original_dist[i,k_reciprocal_expansion_index]) #第i张图片与其前20+图片的权重
  15. V[i,k_reciprocal_expansion_index] = 1.*weight/np.sum(weight) #V记录第i个对其前20+个近邻的权重,其中有0有非0,非0表示没权重的,就似乎非前20+的
  16. original_dist = original_dist[:query_num,] #original_dist裁剪到 只有query x query+g
  • 1

很容易看出,实现的每一张图片(query+gallery)都实现以下操作:

形成一个V矩阵,

这个矩阵表示图i,对应其R星(k_reciprocal_expansion_index)每张图片的权重,当然大部分会是0,表示不相似嘛,非0的就是相似度。且V走了个归一化,权重weight除了每行weight的总和。

这一部分代码以下面一句代码结尾:

original_dist = original_dist[:query_num,] #original_dist裁剪到 只有query x query+g
   
   
  • 1

表示orginal_dist矩阵进行裁剪,只划到有query的地方:(3369是query集的图片数,19283是query+gallery的图片数)

第二部分代码:

第二部分就用到K2了。

这个K2跟之前的K有什么区别呢,首先K肯定是大于K2(MGN里,K2设置成6)的,我们来看看这段代码写了什么:

首先,它先创建了一个维度跟V一样的V_qe,并初始化为0。

然后遍历所有图片,并进行了一个匪夷所思的操作:

在initial_rank里,每行都取k2列,就是每张图片都取前k2个,当然我们前面已经知道initial_rank里的前k个元素(红色框)是从小打到排好序的了,因此这次取的前k2个,肯定也是从小到大排好序的:(如蓝色框)

第i行的k2就如绿色部分。当然我们前面已经知道initial_rank里的元素全是图片索引号,因此V_qe就把从initial_rank中拿出来的k2个索引号,在V中,寻找相对应的K2张图片的数据。然后再做一个均值化,把K2行数值变成一行,作为V_qe[i,:]的数据。

那这样做有什么用呢?

原理如下:

好了,得到V_qe后,V的作用就淘汰了,用V_qe直接代替V。

第三部分代码:

(ps:query_num为3369,是query集的图片数。all_num为19283,为query+gallery的图片数)

这一部分的代码功能是实现杰卡德(jaccard)距离的计算。这里比较关键的是列表 invIndex 和 indNonZero 。(注意:这里的V已经被V_qe代替了)

未免大家忘了,先前情回顾一下杰卡德距离的计算公式:

代码一开始,我们可以看到invIndex的定义:

找出V_qe矩阵每一列中不为0元素的行索引号。并把该行索引号加入到invIndex中。

然后开始定义杰卡德(jaccard)距离的维度:

可以看到jaccard_dist变量的维度和orginal_dist的维度是一样的,并初始化为0,而original_dist的维度之前已经被裁剪过变成3369x19283了:

所以jaccard_dist的维度也是3369x19283。即 (query集图片数)x(query+gallery图片数)

接下来的代码就到了一个循环:这个循环里面定义了indNonZero,indNonZero是以行为单位遍历V_qe中不为0的列,返回改行不为0元素的列索引。举个例子如下图:

由上图可以看出:

invIndex :是 以列为单位(即纵向)先遍历全部图片(query+gallery),每张图又各自与其他图作比对,返回不为0的图片号(行号)

indNonZero:invIndex完成遍历后,就开始indNonZero的遍历,和invIndex相反,indNonZero以行为单位(横向)遍历全部 图片,图上图,当遍历第一张图(i = 0行)时,返回i=0行里 不为0元素的列号,如上图V_qe中红色圈。

indImages:当i=0时,如上图V_qe中的蓝色椭圆 ,返回与图i有相似的图(0,2),然后又找与(0,2)有相似的图,0是(0,1),2是(0,1,2),正好为上图中indImages。当i继续加的时候,indImages也同理生成。

接下来就进入到一个子循环:

遍历indNonZero。

也是以 i = 0为例开始讲解,V[i,indNonZero[j]] 就是 前面图V_qe里,第i行不为0的元素的列号,如(i,0),(i,2)

可能这两行代码看起来很复杂,但其实它计算的temp_min就是下图黄色框这部分:

算出temp_min后,就可以算杰卡德(jaccard)距离了。上面的公式就是杰卡德距离公式,而代码用了一个小技巧实现:

这里可能就有小伙伴很奇怪了,怎么分母变成了 2 - temp_min呢?怎么来的呢?

为了说明,我们先举一个例子看看:

可以看出,两个向量的最大值和最小值符合这种关系:

两向量元素之和 - min的和 = max的和。反之亦然。

所以我们猜测,代码这样写的原因是因为两向量的和加起来为2。

那怀着这个猜测,我们看看是否正确:

上述的V已经变成V_qe就不用说的了,那我们探索一下V_qe的值由谁决定,是由V决定的对不对,那我们看看V的矩阵:

前情回顾一下:

V矩阵是做了归一化的,所以V矩阵中的每一行加起来都是一,V_qe矩阵的每一行是由K2个V矩阵向量均值化而来的,因此V_qe的每一行也是加起来为1。因此两个V_qe矩阵向量加起来就为2。

所以:

杰卡德距离公式:

可以这样实现:

得到杰卡德距离后,就可以算最后距离(final_dist)了:

代码是:

lambda_value 作为re_ranking函数的默认参数,是人为手工设置的超参数。

得到的final dist矩阵是:

进行裁剪 一下:

得到最后的final dist矩阵:

3369表示query集中的图片数,15914表示gallery集中的图片数。矩阵中的元素(i,j)表示query中第i张图片和gallery中第j张图片的 final dist。用作最后ranking的依据。

 

 

-----------------------------------------------------

最后奉上基于k-reciprocal Encoding的re-ranking代码:


   
   
  1. #!/usr/bin/env python2/python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Mon Jun 26 14:46:56 2017
  5. @author: luohao
  6. Modified by Houjing Huang, 2017-12-22.
  7. - This version accepts distance matrix instead of raw features.
  8. - The difference of `/` division between python 2 and 3 is handled.
  9. - numpy.float16 is replaced by numpy.float32 for numerical precision.
  10. Modified by Zhedong Zheng, 2018-1-12.
  11. - replace sort with topK, which save about 30s.
  12. """
  13. """
  14. CVPR2017 paper:Zhong Z, Zheng L, Cao D, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017.
  15. url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf
  16. Matlab version: https://github.com/zhunzhong07/person-re-ranking
  17. """
  18. """
  19. API
  20. q_g_dist: query-gallery distance matrix, numpy array, shape [num_query, num_gallery]
  21. q_q_dist: query-query distance matrix, numpy array, shape [num_query, num_query]
  22. g_g_dist: gallery-gallery distance matrix, numpy array, shape [num_gallery, num_gallery]
  23. k1, k2, lambda_value: parameters, the original paper is (k1=20, k2=6, lambda_value=0.3)
  24. Returns:
  25. final_dist: re-ranked distance, numpy array, shape [num_query, num_gallery]
  26. """
  27. import numpy as np
  28. def k_reciprocal_neigh( initial_rank, i, k1):
  29. forward_k_neigh_index = initial_rank[i,:k1+ 1] #第i个图片的前20个相似图片的索引号
  30. backward_k_neigh_index = initial_rank[forward_k_neigh_index,:k1+ 1]
  31. fi = np.where(backward_k_neigh_index==i)[ 0] #返回backward_k_neigh_index中等于i的图片的行索引号
  32. return forward_k_neigh_index[fi] #返回与第i张图片 互相为k_reciprocal_neigh的图片索引号
  33. def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6, lambda_value=0.3):
  34. # The following naming, e.g. gallery_num, is different from outer scope.
  35. # Don't care about it.
  36. original_dist = np.concatenate(
  37. [np.concatenate([q_q_dist, q_g_dist], axis= 1),
  38. np.concatenate([q_g_dist.T, g_g_dist], axis= 1)],
  39. axis= 0)
  40. original_dist = 2. - 2 * original_dist #np.power(original_dist, 2).astype(np.float32) 余弦距离转欧式距离
  41. original_dist = np.transpose( 1. * original_dist/np.max(original_dist,axis = 0)) #归一化
  42. V = np.zeros_like(original_dist).astype(np.float32)
  43. #initial_rank = np.argsort(original_dist).astype(np.int32)
  44. # top K1+1
  45. initial_rank = np.argpartition( original_dist, range( 1,k1+ 1) ) #取前20,返回索引号
  46. query_num = q_g_dist.shape[ 0]
  47. all_num = original_dist.shape[ 0]
  48. for i in range(all_num):
  49. # k-reciprocal neighbors
  50. k_reciprocal_index = k_reciprocal_neigh( initial_rank, i, k1) #取出互相是前20的
  51. k_reciprocal_expansion_index = k_reciprocal_index
  52. for j in range(len(k_reciprocal_index)): #遍历与第i张图片互相是前20的每张图片
  53. candidate = k_reciprocal_index[j]
  54. candidate_k_reciprocal_index = k_reciprocal_neigh( initial_rank, candidate, int(np.around(k1/ 2)))
  55. if len(np.intersect1d(candidate_k_reciprocal_index,k_reciprocal_index))> 2./ 3*len(candidate_k_reciprocal_index):
  56. k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index,candidate_k_reciprocal_index)
  57. #增广k_reciprocal_neigh数据,形成k_reciprocal_expansion_index
  58. k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) #避免重复,并从小到大排序
  59. weight = np.exp(-original_dist[i,k_reciprocal_expansion_index]) #第i张图片与其前20+图片的权重
  60. V[i,k_reciprocal_expansion_index] = 1.*weight/np.sum(weight) #V记录第i个对其前20+个近邻的权重,其中有0有非0,非0表示没权重的,就似乎非前20+的
  61. original_dist = original_dist[:query_num,] #original_dist裁剪到 只有query x query+g
  62. if k2 != 1:
  63. V_qe = np.zeros_like(V,dtype=np.float32)
  64. for i in range(all_num): #遍历所有图片
  65. V_qe[i,:] = np.mean(V[initial_rank[i,:k2],:],axis= 0) #第i张图片在initial_rank前k2的序号的权重平均值
  66. #第i张图的initial_rank前k2的图片对应全部图的权重平均值
  67. #若V_qe中(i,j)=0,则表明i的前k2个相似图都与j不相似
  68. V = V_qe
  69. del V_qe
  70. del initial_rank
  71. invIndex = []
  72. for i in range(all_num):
  73. invIndex.append(np.where(V[:,i] != 0)[ 0])
  74. jaccard_dist = np.zeros_like(original_dist,dtype = np.float32)
  75. for i in range(query_num):
  76. temp_min = np.zeros(shape=[ 1,all_num],dtype=np.float32)
  77. indNonZero = np.where(V[i,:] != 0)[ 0]
  78. indImages = []
  79. indImages = [invIndex[ind] for ind in indNonZero]
  80. for j in range(len(indNonZero)):
  81. temp_min[ 0,indImages[j]] = temp_min[ 0,indImages[j]]+ np.minimum(V[i,indNonZero[j]],V[indImages[j],indNonZero[j]])
  82. jaccard_dist[i] = 1-temp_min/( 2.-temp_min)
  83. final_dist = jaccard_dist*( 1-lambda_value) + original_dist*lambda_value
  84. del original_dist
  85. del V
  86. del jaccard_dist
  87. final_dist = final_dist[:query_num,query_num:]
  88. return final_dist
  • 1

 

声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号