赞
踩
目标检测是计算机视觉领域的一大重要分支,在自动驾驶等领域发挥着重大作用。本文将介绍如何通过OpenCV实现简单的目标检测。
conda create -n opencv python=3.9
conda activate opencv
pip install opencv-python
链接:https://pan.baidu.com/s/1nW_WE6PqIEmY78gnjmhE7Q
提取码:4d5o
网盘中包含coco.names、权重文件和配置文件。
coco.nams包含了一些常见的目标,如
person
bicycle
car
motorcycle
airplane
bus
train
truck
boat
traffic light
定义目标检测模型,并可设置权重文件和配置文件
cv2.dnn_DetectionModel(weightsPath,configPath)
进行目标检测
classIds, confs, bbox = net.detect(img, confThreshold=0.5)
绘制矩形
cv2.rectangle(img, box, color=(0, 255, 0), thickness=2)
添加文字
cv2.putText(image, text, (5,50 ), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
参数说明:
import cv2 classNames = [] classFile = 'coco.names' with open(classFile,'rt') as f: classNames = f.read().rstrip('\n').split('\n') # print(classNames) configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' weightsPath = 'frozen_inference_graph.pb' net = cv2.dnn_DetectionModel(weightsPath,configPath) net.setInputSize(320,320) net.setInputScale(1.0/ 127.5) net.setInputMean((127.5, 127.5, 127.5)) net.setInputSwapRB(True) img = cv2.imread('1.jpg') classIds, confs, bbox = net.detect(img, confThreshold=0.5) # print(classIds, bbox) for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox): cv2.rectangle(img, box, color=(0, 255, 0), thickness=2) cv2.putText(img, classNames[classId - 1].upper(), (box[0] + 10, box[1] + 30), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2) cv2.imshow('res', img) cv2.waitKey(0)
除了对图像进行目标检测,OpenCV也可以开启摄像头进行实时目标检测。
开启摄像头
cv2.VideoCapture(0):开启笔记本自带摄像头
cv2.VideoCapture(1):开启USB摄像头
import cv2 thres = 0.45 # Threshold to detect object cap = cv2.VideoCapture(1) cap.set(3,1280) cap.set(4,720) cap.set(10,70) classNames= [] classFile = 'coco.names' with open(classFile,'rt') as f: classNames = f.read().rstrip('\n').split('\n') configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt' weightsPath = 'frozen_inference_graph.pb' net = cv2.dnn_DetectionModel(weightsPath,configPath) net.setInputSize(320,320) net.setInputScale(1.0/ 127.5) net.setInputMean((127.5, 127.5, 127.5)) net.setInputSwapRB(True) while True: success,img = cap.read() classIds, confs, bbox = net.detect(img,confThreshold=thres) print(classIds,bbox) if len(classIds) != 0: for classId, confidence,box in zip(classIds.flatten(),confs.flatten(),bbox): cv2.rectangle(img,box,color=(0,255,0),thickness=2) cv2.putText(img,classNames[classId-1].upper(),(box[0]+10,box[1]+30), cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2) cv2.putText(img,str(round(confidence*100,2)),(box[0]+200,box[1]+30), cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2) cv2.imshow("Output",img) cv2.waitKey(1)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。