当前位置:   article > 正文

bert中的sep_关于bert+lstm+crf实体识别训练数据的构建

bert cls 101

一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面使用pad_sequences对句子长度进行截断以及padding填充,使每个输入句子的长度一致。构造训练集后,下载中文的预训练模型并加载相应的模型和词表vocab以参数配置,最后并利用albert抽取句子的embedding,这个embedding可以作为一个下游任务和其它模型进行组合完成特定任务的训练。

1 importtorch2 from configs.base importconfig3 from model.modeling_albert importBertConfig, BertModel4 from model.tokenization_bert importBertTokenizer5 from keras.preprocessing.sequence importpad_sequences6 from torch.utils.data importTensorDataset, DataLoader, RandomSampler7

8 importos9

10 device = torch.device('cuda' if torch.cuda.is_available() else "cpu")11 MAX_LEN = 10

12 if __name__ == '__main__':13 bert_config = BertConfig.from_pretrained(str(config['albert_config_path']), share_type='all')14 base_path =os.getcwd()15 VOCAB = base_path + '/configs/vocab.txt' #your path for model and vocab

16 tokenizer =BertTokenizer.from_pretrained(VOCAB)17

18 #encoder text

19 tag2idx={'[SOS]':101, '[EOS]':102, '[PAD]':0, 'B_LOC':1, 'I_LOC':2, 'O':3}20 sentences = ['我是中华人民共和国国民', '我爱祖国']21 tags = ['O O B_LOC I_LOC I_LOC I_LOC I_LOC I_LOC O O', 'O O O O']22

23 tokenized_text = [tokenizer.tokenize(sent) for sent insentences]24 #利用pad_sequence对序列长度进行截断和padding

25 input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_text], #没法一条一条处理,只能2-d的数据,即多于一条样本,但是如果全部加载到内存是不是会爆

26 maxlen=MAX_LEN-2,27 truncating='post',28 padding='post',29 value=0)30

31 tag_ids = pad_sequences([[tag2idx.get(tok) for tok in tag.split()] for tag intags],32 maxlen=MAX_LEN-2,33 padding="post",34 truncating="post",35 value=0)36

37 #bert中的句子前后需要加入[CLS]:101和[SEP]:102

38 input_ids_cls_sep =[]39 for input_id ininput_ids:40 linelist =[]41 linelist.append(101)42 flag =True43 for tag ininput_id:44 if tag >0:45 linelist.append(tag)46 elif tag == 0 andflag:47 linelist.append(102)48 linelist.append(tag)49 flag =False50 else:51 linelist.append(tag)52 if tag >0:53 linelist.append(102)54 input_ids_cls_sep.append(linelist)55

56 tag_ids_cls_sep =[]57 for tag_id intag_ids:58 linelist =[]59 linelist.append(101)60 flag =True61 for tag intag_id:62 if tag >0:63 linelist.append(tag)64 elif tag == 0 andflag:65 linelist.append(102)66 linelist.append(tag)67 flag =False68 else:69 linelist.append(tag)70 if tag >0:71 linelist.append(102)72 tag_ids_cls_sep.append(linelist)73

74 attention_masks = [[int(tok > 0) for tok in line] for line ininput_ids_cls_sep]75

76 print('---------------------------')77 print('input_ids:{}'.format(input_ids_cls_sep))78 print('tag_ids:{}'.format(tag_ids_cls_sep))79 print('attention_masks:{}'.format(attention_masks))80

81

82 #input_ids = torch.tensor([tokenizer.encode('我 是 中 华 人 民 共 和 国 国 民', add_special_tokens=True)]) #为True则句子首尾添加[CLS]和[SEP]

83 #print('input_ids:{}, size:{}'.format(input_ids, len(input_ids)))

84 #print('attention_masks:{}, size:{}'.format(attention_masks, len(attention_masks)))

85

86 inputs_tensor =torch.tensor(input_ids_cls_sep)87 tags_tensor =torch.tensor(tag_ids_cls_sep)88 masks_tensor =torch.tensor(attention_masks)89

90 train_data =TensorDataset(inputs_tensor, tags_tensor, masks_tensor)91 train_sampler =RandomSampler(train_data)92 train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=2)93

94 model = BertModel.from_pretrained(config['bert_dir'],config=bert_config)95 model.to(device)96 model.eval()97 with torch.no_grad():98 '''

99 note:100 一.101 如果设置:"output_hidden_states":"True"和"output_attentions":"True"102 输出的是: 所有层的 sequence_output, pooled_output, (hidden_states), (attentions)103 则 all_hidden_states, all_attentions = model(input_ids)[-2:]104

105 二.106 如果没有设置:output_hidden_states和output_attentions107 输出的是:最后一层 --> (output_hidden_states, output_attentions)108 '''

109 for index, batch inenumerate(train_dataloader):110 batch = tuple(t.to(device) for t inbatch)111 b_input_ids, b_input_mask, b_labels =batch112 last_hidden_state = model(input_ids = b_input_ids,attention_mask =b_input_mask)113 print(len(last_hidden_state))114 all_hidden_states, all_attentions = last_hidden_state[-2:] #这里获取所有层的hidden_satates以及attentions

115 print(all_hidden_states[-2].shape)#倒数第二层hidden_states的shape

print(all_hidden_states[-2])

二.打印结果

input_ids:[[101, 2769, 3221, 704, 1290, 782, 3696, 1066, 1469, 102], [101, 2769, 4263, 4862, 1744, 102, 0, 0, 0, 0]]

tag_ids:[[101, 3, 3, 1, 2, 2, 2, 2, 2, 102], [101, 3, 3, 3, 3, 102, 0, 0, 0, 0]]

attention_masks:[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]]

4

torch.Size([2, 10, 768])

tensor([[[-1.1074, -0.0047,  0.4608,  ..., -0.1816, -0.6379,  0.2295],

[-0.1930, -0.4629,  0.4127,  ..., -0.5227, -0.2401, -0.1014],

[ 0.2682, -0.6617,  0.2744,  ..., -0.6689, -0.4464,  0.1460],

...,

[-0.1723, -0.7065,  0.4111,  ..., -0.6570, -0.3490, -0.5541],

[-0.2028, -0.7025,  0.3954,  ..., -0.6566, -0.3653, -0.5655],

[-0.2026, -0.6831,  0.3778,  ..., -0.6461, -0.3654, -0.5523]],

[[-1.3166, -0.0052,  0.6554,  ..., -0.2217, -0.5685,  0.4270],

[-0.2755, -0.3229,  0.4831,  ..., -0.5839, -0.1757, -0.1054],

[-1.4941, -0.1436,  0.8720,  ..., -0.8316, -0.5213, -0.3893],

...,

[-0.7022, -0.4104,  0.5598,  ..., -0.6664, -0.1627, -0.6270],

[-0.7389, -0.2896,  0.6083,  ..., -0.7895, -0.2251, -0.4088],

[-0.0351, -0.9981,  0.0660,  ..., -0.4606,  0.4439, -0.6745]]])

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/395045
推荐阅读
相关标签
  

闽ICP备14008679号