赞
踩
此题直接对7求余即可。
- public class Main {
- public static void main(String[] args) {
- System.out.println(Math.pow(20, 22) % 7 + 6);
- }
- }
贴一个BigInteger的代码
- import java.math.BigInteger;
-
- public class Main {
- public static void main(String[] args) {
- BigInteger bg = new BigInteger(20+"");
- BigInteger res = bg.pow(22).remainder(BigInteger.valueOf(7)).add(BigInteger.valueOf(6));
- System.out.println(res);
- }
- }
这题我知道很多人把题目都给看错了,我认识好几个都是只看到了回文,没看到还有单调的条件。(大佬们都忙着做后面的题)
读题可以知道,回文数左右对称,所以只需判断是否回文,然后再判断左边的数单调不减,则右边的数一定单调不增。判断回文数可以使用双指针判断。
- public class Main {
- public static void main(String[] args) {
- long start = System.currentTimeMillis();
- int count = 0;
- for (int i = 2022; i <= 2022222022; i++) {
- if (isPalindrome(i) && check(i)) {
- count++;
- }
- }
- long end = System.currentTimeMillis();
- System.out.println(count);
- System.out.println("共用时" + (end - start) / 1000 % 60 + "秒");//测了一下时间用时40s
- }
-
- private static boolean check(int num) {
- String s = num + "";
- for (int i = 0; i < s.length() / 2; i++) {
- if (s.charAt(i) > s.charAt(i + 1)) return false;
- }
- return true;
- }
-
- private static boolean isPalindrome(int num) {
- String s = num + "";
- int n = s.length() - 1;
- for (int l = 0, r = n; l < r; l++, r --)
- if (s.charAt(l) != s.charAt(r)) return false;
- return true;
- }
- }
-
签到题,分别统计输出即可。
- import java.util.Scanner;
-
- public class Main {
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- String s = sc.nextLine();
- int[] arr = new int[26];
- for (int i = 0; i < s.length(); i++) {
- arr[s.charAt(i) - 'A']++;
- }
- int max = Integer.MIN_VALUE;
- for (int i = 0; i < 26; i++) {
- max = Math.max(max, arr[i]);
- }
- for (int i = 0; i < 26; i++) {
- if(arr[i] == max) System.out.print((char) (i+'A'));
- }
- }
- }
这个题我觉得虽然是个十分题,但是还是挺难的(也可能是我太菜了)。主要是要考虑的因素比较多,核心的想法应该是要计算出左边、右边与中间相等的数的个数,分情况判断每个数加上最小刷题数与中间数相等后需不需要+1。
这题当时给我做烦了,浪费了很多时间,我只考虑了和中间的相比,比它大就输出0,比它小就输出中间的数减去num[i]+1,并没有判断左右数与中间数相等的情况,没有全部AC。这里贴一下别人的代码
-
- import java.util.Arrays;
- import java.util.Scanner;
-
- public class Main {
-
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- int n = sc.nextInt();
- int[] nums = new int[n];
- int[] temp = new int[n];
- for (int i = 0; i < n; i++) {
- nums[i] = sc.nextInt();
- temp[i] = nums[i];
- }
- // 排序数组
- Arrays.sort(temp);
- // 中间的下标
- int midIndex = n / 2;
- // 中间的值
- int midValue = temp[midIndex];
-
- int midOption = 0;
-
- int option = 0;
- // 左边和中值相同值的数量
- int sameLeft = 0;
- // 右边和中值相同值的数量
- int sameRight = 0;
-
- for (int i = midIndex - 1, j = midIndex; i >= 0; i--, j++) {
- if (temp[i] == midValue) {
- sameLeft++;
- }
- if (temp[j] == midValue) {
- sameRight++;
- }
- if (temp[i] != temp[j]) {
- break;
- }
- }
-
- if (sameLeft >= sameRight) {
- option = 1;
- }
- if (sameLeft > sameRight) {
- midOption = 1;
- }
-
- for (int i = 0, len = nums.length; i < len; i++) {
- int count = 0;
- if (nums[i] == midValue) {
- count = midOption;
- } else {
- count = midValue - nums[i] + option;
- if (count < 0) {
- count = 0;
- }
- }
- if (i != n - 1) {
- System.out.print(count + " ");
- } else {
- System.out.println(count);
- }
-
- }
- }
-
- }
-
我觉得这个代码的方法还是比较巧妙的hh
-------------------------------------------------------------分界线-----------------------------------------------------------
2023年2月7日更新
核心思想:排序找中位数,然后统计左右两边比mid大和比mid小的数,分类讨论。
(感觉像个模拟题)挺烦的十分题
- import java.util.Arrays;
- import java.util.Scanner;
-
- public class Main {
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- int n = sc.nextInt();
- int[] a = new int[n], tmp = new int[n];
- for (int i = 0; i < n; i++) {
- a[i] = sc.nextInt();
- tmp[i] = a[i];
- }
- Arrays.sort(tmp);
- int mid = tmp[n / 2];
- int bg_cnt = 0, sml_cnt = 0; // 记录比mid大的和比mid小的数
- for (int i = 0; i < n; i++)
- if (a[i] < mid) sml_cnt ++;
- else if (a[i] > mid) bg_cnt ++;
-
- if (bg_cnt < sml_cnt) {
- for (int i = 0; i < n; i++)
- if (a[i] < mid) System.out.print(mid - a[i] + " ");
- else System.out.print(0 + " ");
- } else if (bg_cnt == sml_cnt){
- for (int i = 0; i < n; i++)
- if (a[i] < mid) System.out.print(mid - a[i] + 1 + " ");
- else System.out.print(0 + " ");
- }else {
- for (int i = 0; i < n; i++)
- if (a[i] <= mid) System.out.print(mid - a[i] + 1 + " ");
- else System.out.print(0 + " ");
- }
- }
- }
这题我又给想简单了,此题的数据范围非常大,所以可能只能过极个别样例。也不能直接从1到N枚举判断,突破口是数字中谁和谁相乘得到10,很容易想到2*5,2的个数肯定比5多,所以N的阶乘最后有多少0 就看N能分成多少5 。可以从1~N每个数都除以5,然后统计个5的个数,因为25/5也会得到5,所以需要用循环计算。
暴力法
- import java.util.Scanner;
-
- public class Main {
- //后面以0 结尾的一定是5!....(5的倍数的阶乘) 所以只需要判断5的倍数的阶乘
- //(判断的数)/5 就是含有5的个数 也是阶乘后0的个数
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- long k = sc.nextLong();
- long count;
- long a = 5;//直接从5的阶乘(120)开始判断
- while (true) {
- long tempA = a;
- count = 0;
- while (tempA > 0) {
- tempA /= 5;
- count += tempA;
- }
- if (count < k) {
- a += 5;
- } else if (count == k) {
- System.out.println(a);
- break;
- } else {
- System.out.println(-1);
- break;
- }
- }
- }
- }
-
-------------------------------------------------------------分界线-----------------------------------------------------------
2023年2月8日更新
二分
N 越大,末尾的 0 越多,具有单调性,可以使用二分找到答案。
- import java.util.Scanner;
-
- public class Main {
- // 找N里面有多少个5(25里有两个5) 二分出一个>=k(找大于等于k的第一个位置)的最小的N,不存在则输出-1
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- long l = 1, r = Long.MAX_VALUE-5;
- long k = sc.nextLong();
- while (l < r) {
- long mid = l + r >> 1;
- if (cal(mid) >= k) r = mid;
- else l = mid + 1;
- }
- if (cal(r) == k) System.out.println(r);
- else System.out.println(-1);
- }
-
- private static long cal(long num) {
- long cnt = 0;
- while (num > 0) {
- cnt += num / 5;
- num /= 5;
- }
- return cnt;
- }
- }
这题感觉比G题还难做,考试只能打打暴力了....
- import java.util.ArrayDeque;
- import java.util.Deque;
- import java.util.Scanner;
- // 枚举行x1,x2,二分最大的列数len,维护滑动窗口为大小为len的最大值和最小值
- // 单调队列+二分
- public class Main {
- // 矩阵中最大值-最小值<=limit && 元素个数最多
- static int n, m, limit, ans;
- static int[][][] max, min;
- //max[k][i][j]代表的含义是在第k列中,第i个元素到第j个的元素最大值是多少,min数组同理。
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- n = sc.nextInt(); m = sc.nextInt();
- max = new int[m + 1][n + 1][n + 1]; min = new int[m + 1][n + 1][n + 1];
- for (int i = 1; i <= n; i++)
- for (int j = 1; j <= m; j++)
- max[j][i][i] = min[j][i][i] = sc.nextInt();
- limit = sc.nextInt();
-
- for (int k = 1; k <= m; k++)
- for (int i = 1; i <= n; i++)
- for (int j = i + 1; j <= n; j++) {
- max[k][i][j] = Math.max(max[k][j][j], max[k][i][j - 1]);
- min[k][i][j] = Math.min(min[k][j][j], min[k][i][j - 1]);
- }
-
- for (int x1 = 1; x1 <= n; x1++)
- for (int x2 = x1; x2 <= n; x2++) {
- int l = 1, r = m;
- while (l < r) {
- int mid = l + r + 1 >> 1;
- if (check(x1, x2, mid)) l = mid;
- else r = mid - 1;
- }
- if (check(x1, x2, r)) ans = Math.max(ans, (x2 - x1 + 1) * r);
- }
- System.out.println(ans);
- }
-
- private static boolean check(int x1, int x2, int k) {
- Deque<Integer> q_min = new ArrayDeque<>();
- Deque<Integer> q_max = new ArrayDeque<>();
- // 枚举所有列
- for (int i = 1; i <= m; i++) {
- if (!q_min.isEmpty() && i - k >= q_min.peekFirst()) q_min.pollFirst();
- while (!q_min.isEmpty() && min[i][x1][x2] <= min[q_min.peekLast()][x1][x2]) q_min.pollLast();
- q_min.addLast(i);
-
- if (!q_max.isEmpty() && i - k >= q_max.peekFirst()) q_max.pollFirst();
- while (!q_max.isEmpty() && max[i][x1][x2] >= max[q_max.peekLast()][x1][x2]) q_max.pollLast();
- q_max.addLast(i);
- //窗口大小为k
- if (i >= k && max[q_max.peekFirst()][x1][x2] - min[q_min.peekFirst()][x1][x2] <= limit) return true;
- }
- return false;
- }
- }
枚举所有分割点
回溯算法可以枚举所有情况,当每个切分的子数组都满足题目要求时,答案++,但时间复杂度较高,会tle
小技巧
问 : 如何判断区间[i,j]是否可以组成一段连续的自然数?
答 :只需 区间最大值 - 区间最小值 == j - i (区间长度)即可
- import java.util.LinkedList;
- import java.util.Scanner;
-
- public class Main {
- static LinkedList<Integer> path = new LinkedList<>();
- static int res = 0, mod = 1000000007;
- public static void main(String[] args) {
- Scanner sc = new Scanner(System.in);
- int n = sc.nextInt();
- int[] a = new int[n];
- for (int i = 0; i < n; i++) a[i] = sc.nextInt();
- dfs(a, 0);
- System.out.println(res % mod);
- }
-
- private static void dfs(int[] a, int startindex) {
- int n = a.length;
- if (startindex == n) {
- res ++;
- return;
- }
- for (int i = startindex; i < n; i++) {
- if (check(a, startindex, i)) {
- path.add(i);
- dfs(a, i + 1);
- path.removeLast();
- }
- }
- }
-
- private static boolean check(int[] a, int l, int r) {
- int max = Integer.MIN_VALUE, min = Integer.MAX_VALUE;
- for (int i = l; i <= r; i++) {
- if (a[i] > max) max = a[i];
- if (a[i] < min) min = a[i];
- }
- return max - min == r - l;
- }
- }
- import java.util.Scanner;
-
- public class Main {
- static int mod = 1000000007;
- public static void main(String[] args) {
- // f[i]: 以a[i]结尾的切分合法数组的方法数量
- Scanner sc = new Scanner(System.in);
- int n = sc.nextInt();
- int[] a = new int[n + 1];
- for (int i = 1; i <= n; i++) a[i] = sc.nextInt();
- int[] f = new int[n + 1];
- f[0] = 1;
- for (int i = 1; i <= n; i++) {
- int max = Integer.MIN_VALUE, min = Integer.MAX_VALUE;
- for (int j = i; j > 0; j--) {
- max = Math.max(max, a[j]);
- min = Math.min(min, a[j]);
- //如果a[j, i]是一段连续的自然数,那么就有以a[i]结尾的合法切分合法数量+=以a[j - 1]结尾的合法切分数量
- //即f[i] += f[j - 1]
- if (max - min == i - j)
- f[i] = (f[i] + f[j - 1]) % mod;
- }
- }
- System.out.println(f[n]);
- }
- }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。