赞
踩
近期在处理HBase的业务方面常常遇到各种瓶颈,一天大概一亿条数据,在HBase性能调优方面进行相关配置和调优后取得了一定的成效,于是,特此在这里总结了一下关于HBase全面的配置,主要参考我的另外两篇文章:
(1)http://blog.csdn.net/u014297175/article/details/47975875
(2)http://blog.csdn.net/u014297175/article/details/47976909
在其基础上总结出来的性能优化方法。
1.垃圾回收优化
Java本身提供了垃圾回收机制,依靠JRE对程序行为的各种假设进行垃圾回收,但是HBase支持海量数据持续入库,非常占用内存,因此繁重的负载会迫使内存分配策略无法安全地依赖于JRE的判断:需要调整JRE的参数来调整垃圾回收策略。有关java内存回收机制的问题具体请参考:http://my.oschina.net/sunnywu/blog/332870。
(1)HBASE_OPTS或者HBASE_REGIONSERVER_OPT变量来设置垃圾回收的选项,后面一般是用于配置RegionServer的,需要在每个子节点的HBASE_OPTS文件中进行配置。
1)首先是设置新生代大小的参数,不能过小,过小则导致年轻代过快成为老生代,引起老生代产生内存随便。同样不能过大,过大导致所有的JAVA进程停止时间长。-XX:MaxNewSize=256m-XX:NewSize=256m 这两个可以合并成为-Xmn256m这一个配置来完成。
2)其次是设置垃圾回收策略:-XX:+UseParNewGC -XX:+UseConcMarkSweepGC也叫收集器设置。
3)设置CMS的值,占比多少时,开始并发标记和清扫检查。-XX:CMSInitiatingOccupancyFraction=70
4)打印垃圾回收信息:-verbose:gc -XX: +PrintGCDetails -XX:+PrintGCTimeStamps
-Xloggc:$HBASE_HOME/logs/gc-$(hostname)-hbase.log
最终可以得到:HBASE_REGIONSERVER_OPT="-Xmx8g -Xms8g –Xmn256m -XX:+UseParNewGC -XX:+UseConcMarkSweepGC \
-XX:CMSInitiatingOccupancyFraction=70 -verbose:gc \
-XX:+PrintGCDetails -XX:+PrintGCTimeStamps \
-Xloggc:$HBASE_HOME/logs/gc-$(hostname)-hbase.log
(2)hbase.hregion.memstore.mslab.enabled默认值:true,这个是在hbase-site.xml中进行配置的值。
说明:减少因内存碎片导致的Full GC,提高整体性能。
2.启用压缩,详情自行搜索,暂时未曾尝试,后面持续更新。
3.优化Region拆分合并以及与拆分Region
(1)hbase.hregion.max.filesize默认为256M(在hbase-site.xml中进行配置),当region达到这个阈值时,会自动拆分。可以把这个值设的无限大,则可以关闭HBase自动管理拆分,手动运行命令来进行region拆分,这样可以在不同的region上交错运行,分散I/O负载。
(2)预拆分region
用户可以在建表的时候就制定好预设定的region,这样就可以避免后期region自动拆分造成I/O负载。
4.客户端入库调优
(1)用户在编写程序入库时,HBase的自动刷写是默认开启的,即用户每一次put都会提交到HBase server进行一次刷写,如果需要高速插入数据,则会造成I/O负载过重。在这里可以关闭自动刷写功能,setAutoFlush(false)。如此,put实例会先写到一个缓存中,这个缓存的大小通过hbase.client.write.buffer这个值来设定缓存区,当缓存区被填满之后才会被送出。如果想要显示刷写数据,可以调用flushCommits()方法。
此处引申:采取这个方法要估算服务器端内存占用则可以:hbase.client.write.buffer*hbase.regionserver.handler.count得出内存情况。
(2)第二个方法,是关闭每次put上的WAL(writeToWAL(flase))这样可以刷写数据前,不需要预写日志,但是如果数据重要的话建议不要关闭。
(3)hbase.client.scanner.caching:默认为1
这是设计客户端读取数据的配置调优,在hbase-site.xml中进行配置,代表scanner一次缓存多少数据(从服务器一次抓取多少数据来scan)默认的太小,但是对于大文件,值不应太大。
(4)hbase.regionserver.lease.period默认值:60000
说明:客户端租用HRegion server 期限,即超时阀值。
调优:这个配合hbase.client.scanner.caching使用,如果内存够大,但是取出较多数据后计算过程较长,可能超过这个阈值,适当可设置较长的响应时间以防被认为宕机。
(5)还有诸多实践,如设置过滤器,扫描缓存等,指定行扫描等多种客户端调优方案,需要在实践中慢慢挖掘。
5.HBase配置文件
上面涉及到的调优内容或多或少在HBase配置文件中都有所涉及,因此,下面的配置不涵盖上面已有的配置。
(1) zookeeper.session.timeout(默认3分钟)
ZK的超期参数,默认配置为3分钟,在生产环境上建议减小这个值在1分钟或更小。
设置原则:这个值越小,当RS故障时Hmaster获知越快,Hlog分裂和region 部署越快,集群恢复时间越短。 但是,设置这个值得原则是留足够的时间进行GC回收,否则会导致频繁的RS宕机。一般就做默认即可
(2)hbase.regionserver.handler.count(默认10)
对于大负载的put(达到了M范围)或是大范围的Scan操作,handler数目不易过大,易造成OOM。 对于小负载的put或是get,delete等操作,handler数要适当调大。根据上面的原则,要看我们的业务的情况来设置。(具体情况具体分析)。
(3)HBASE_HEAPSIZE(hbase-env.sh中配置)
我的前两篇文章Memstoresize40%(默认) blockcache 20%(默认)就是依据这个而成的,总体HBase内存配置。设到机器内存的1/2即可。
(4)选择使用压缩算法,目前HBase默认支持的压缩算法包括GZ,LZO以及snappy(hbase-site.xml中配置)
(5)hbase.hregion.max.filesize默认256M
上面说过了,hbase自动拆分region的阈值,可以设大或者无限大,无限大需要手动拆分region,懒的人别这样。
(6)hbase.hregion.memstore.flush.size
单个region内所有的memstore大小总和超过指定值时,flush该region的所有memstore。
(7)hbase.hstore.blockingStoreFiles 默认值:7
说明:在flush时,当一个region中的Store(CoulmnFamily)内有超过7个storefile时,则block所有的写请求进行compaction,以减少storefile数量。
调优:block写请求会严重影响当前regionServer的响应时间,但过多的storefile也会影响读性能。从实际应用来看,为了获取较平滑的响应时间,可将值设为无限大。如果能容忍响应时间出现较大的波峰波谷,那么默认或根据自身场景调整即可。
(8)hbase.hregion.memstore.block.multiplier默认值:2
说明:当一个region里总的memstore占用内存大小超过hbase.hregion.memstore.flush.size两倍的大小时,block该region的所有请求,进行flush,释放内存。
虽然我们设置了region所占用的memstores总内存大小,比如64M,但想象一下,在最后63.9M的时候,我Put了一个200M的数据,此时memstore的大小会瞬间暴涨到超过预期的hbase.hregion.memstore.flush.size的几倍。这个参数的作用是当memstore的大小增至超过hbase.hregion.memstore.flush.size 2倍时,block所有请求,遏制风险进一步扩大。
调优: 这个参数的默认值还是比较靠谱的。如果你预估你的正常应用场景(不包括异常)不会出现突发写或写的量可控,那么保持默认值即可。如果正常情况下,你的写请求量就会经常暴长到正常的几倍,那么你应该调大这个倍数并调整其他参数值,比如hfile.block.cache.size和hbase.regionserver.global.memstore.upperLimit/lowerLimit,以预留更多内存,防止HBase server OOM。
(9)hbase.regionserver.global.memstore.upperLimit:默认40%
当ReigonServer内所有region的memstores所占用内存总和达到heap的40%时,HBase会强制block所有的更新并flush这些region以释放所有memstore占用的内存。
hbase.regionserver.global.memstore.lowerLimit:默认35%
同upperLimit,只不过lowerLimit在所有region的memstores所占用内存达到Heap的35%时,不flush所有的memstore。它会找一个memstore内存占用最大的region,做个别flush,此时写更新还是会被block。lowerLimit算是一个在所有region强制flush导致性能降低前的补救措施。在日志中,表现为 “** Flushthread woke up with memory above low water.”。
调优:这是一个Heap内存保护参数,默认值已经能适用大多数场景。
(10)hfile.block.cache.size:默认20%
这是涉及hbase读取文件的主要配置,BlockCache主要提供给读使用。读请求先到memstore中查数据,查不到就到blockcache中查,再查不到就会到磁盘上读,并把读的结果放入blockcache。由于blockcache是一个LRU,因此blockcache达到上限(heapsize * hfile.block.cache.size)后,会启动淘汰机制,淘汰掉最老的一批数据。对于注重读响应时间的系统,应该将blockcache设大些,比如设置blockcache=0.4,memstore=0.39,这会加大缓存命中率。
(11)hbase.regionserver.hlog.blocksize和hbase.regionserver.maxlogs
之所以把这两个值放在一起,是因为WAL的最大值由hbase.regionserver.maxlogs*hbase.regionserver.hlog.blocksize (2GB by default)决定。一旦达到这个值,Memstore flush就会被触发。所以,当你增加Memstore的大小以及调整其他的Memstore的设置项时,你也需要去调整HLog的配置项。否则,WAL的大小限制可能会首先被触发,因而,你将利用不到其他专门为Memstore而设计的优化。抛开这些不说,通过WAL限制来触发Memstore的flush并非最佳方式,这样做可能会会一次flush很多Region,尽管“写数据”是很好的分布于整个集群,进而很有可能会引发flush“大风暴”。
提示:最好将hbase.regionserver.hlog.blocksize* hbase.regionserver.maxlogs 设置为稍微大于hbase.regionserver.global.memstore.lowerLimit* HBASE_HEAPSIZE。
6.HDFS优化部分
HBase是基于hdfs文件系统的一个数据库,其数据最终是写到hdfs中的,因此涉及hdfs调优的部分也是必不可少的。
(1)dfs.replication.interval:默认3秒
可以调高,避免hdfs频繁备份,从而提高吞吐率。
(2)dfs.datanode.handler.count:默认为10
可以调高这个处理线程数,使得写数据更快
(3)dfs.namenode.handler.count:默认为8
(4)dfs.datanode.socket.write.timeout:默认480秒,并发写数据量大的时候可以调高一些,否则会出现我另外一篇博客介绍的的错误。
(5)dfs.socket.timeout:最好也要调高,默认的很小。
同上,可以调高,提高整体速度与性能。
7.Hbase表的设计
1.1 Pre-Creating Regions
默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都向这一个region写数据,直到这个region足够大了才进行切分。一种可以加快批量写入速度的方法是通过预先创建一些空的regions,这样当数据写入HBase时,会按照region分区情况,在集群内做数据的负载均衡。
- public static boolean createTable(HBaseAdmin admin, HTableDescriptor table, byte[][] splits)
- throws IOException {
- try {
- admin.createTable(table, splits);
- return true;
- } catch (TableExistsException e) {
- logger.info("table " + table.getNameAsString() + " already exists");
- // the table already exists...
- return false;
- }
- }
-
- public static byte[][] getHexSplits(String startKey, String endKey, int numRegions) { //start:001,endkey:100,10region [001,010]
- [011,020]
- byte[][] splits = new byte[numRegions-1][];
- BigInteger lowestKey = new BigInteger(startKey, 16);
- BigInteger highestKey = new BigInteger(endKey, 16);
- BigInteger range = highestKey.subtract(lowestKey);
- BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions));
- lowestKey = lowestKey.add(regionIncrement);
- for(int i=0; i < numRegions-1;i++) {
- BigInteger key = lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i)));
- byte[] b = String.format("%016x", key).getBytes();
- splits[i] = b;
- }
- return splits;
- }
1.2 Row Key
HBase中row key用来检索表中的记录,支持以下三种方式:
• 通过单个row key访问:即按照某个row key键值进行get操作;
• 通过row key的range进行scan:即通过设置startRowKey和endRowKey,在这个范围内进行扫描;
• 全表扫描:即直接扫描整张表中所有行记录。
在HBase中,row key可以是任意字符串,最大长度64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长的。
row key是按照字典序存储,因此,设计row key时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为row key的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE - timestamp作为row key,这样能保证新写入的数据在读取时可以被快速命中。
Rowkey规则:
1、 越小越好
2、 Rowkey的设计是要根据实际业务来
3、 散列性
a) 取反 001 002 100 200
b) Hash
1.3 Column Family
不要在一张表里定义太多的column family。目前Hbase并不能很好的处理超过2~3个column family的表。因为某个column family在flush的时候,它邻近的column family也会因关联效应被触发flush,最终导致系统产生更多的I/O。感兴趣的同学可以对自己的HBase集群进行实际测试,从得到的测试结果数据验证一下。
1.4 In Memory
创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。
1.5 Max Version
创建表的时候,可以通过HColumnDescriptor.setMaxVersions(int maxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。
1.6 Time To Live
创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置setTimeToLive(2 * 24 * 60 * 60)。
1.7 Compact & Split
在HBase中,数据在更新时首先写入WAL 日志(HLog)和内存(MemStore)中,MemStore中的数据是排序的,当MemStore累计到一定阈值时,就会创建一个新的MemStore,并且将老的MemStore添加到flush队列,由单独的线程flush到磁盘上,成为一个StoreFile。于此同时, 系统会在zookeeper中记录一个redo point,表示这个时刻之前的变更已经持久化了(minor compact)。
StoreFile是只读的,一旦创建后就不可以再修改。因此Hbase的更新其实是不断追加的操作。当一个Store中的StoreFile达到一定的阈值后,就会进行一次合并(major compact),将对同一个key的修改合并到一起,形成一个大的StoreFile,当StoreFile的大小达到一定阈值后,又会对 StoreFile进行分割(split),等分为两个StoreFile。
由于对表的更新是不断追加的,处理读请求时,需要访问Store中全部的StoreFile和MemStore,将它们按照row key进行合并,由于StoreFile和MemStore都是经过排序的,并且StoreFile带有内存中索引,通常合并过程还是比较快的。
实际应用中,可以考虑必要时手动进行major compact,将同一个row key的修改进行合并形成一个大的StoreFile。同时,可以将StoreFile设置大些,减少split的发生。
hbase为了防止小文件(被刷到磁盘的menstore)过多,以保证保证查询效率,hbase需要在必要的时候将这些小的store file合并成相对较大的store file,这个过程就称之为compaction。在hbase中,主要存在两种类型的compaction:minor compaction和major compaction。
minor compaction:的是较小、很少文件的合并。
major compaction 的功能是将所有的store file合并成一个,触发major compaction的可能条件有:major_compact 命令、majorCompact() API、region server自动运行(相关参数:hbase.hregion.majoucompaction 默认为24 小时、hbase.hregion.majorcompaction.jetter 默认值为0.2 防止region server 在同一时间进行major compaction)。
hbase.hregion.majorcompaction.jetter参数的作用是:对参数hbase.hregion.majoucompaction 规定的值起到浮动的作用,假如两个参数都为默认值24和0,2,那么major compact最终使用的数值为:19.2~28.8 这个范围。
1、 关闭自动major compaction
2、 手动编程major compaction
Timer类,crontab
minor compaction的运行机制要复杂一些,它由一下几个参数共同决定:
hbase.hstore.compaction.min :默认值为 3,表示至少需要三个满足条件的store file时,minor compaction才会启动
hbase.hstore.compaction.max 默认值为10,表示一次minor compaction中最多选取10个store file
hbase.hstore.compaction.min.size 表示文件大小小于该值的store file 一定会加入到minor compaction的store file中
hbase.hstore.compaction.max.size 表示文件大小大于该值的store file 一定会被minor compaction排除
hbase.hstore.compaction.ratio 将store file 按照文件年龄排序(older to younger),minor compaction总是从older store file开始选择
HBase性能优化方法总结(二):写表操作
下面是本文总结的第二部分内容:写表操作相关的优化方法。
2. 写表操作
2.1 多HTable并发写
创建多个HTable客户端用于写操作,提高写数据的吞吐量,一个例子:
- static final Configuration conf = HBaseConfiguration.create();
- static final String table_log_name = “user_log”;
- wTableLog = new HTable[tableN];
- for (int i = 0; i < tableN; i++) {
- wTableLog[i] = new HTable(conf, table_log_name);
- wTableLog[i].setWriteBufferSize(5 * 1024 * 1024); //5MB
- wTableLog[i].setAutoFlush(false);
- }
2.2 HTable参数设置
2.2.1 Auto Flush
通过调用HTable.setAutoFlush(false)方法可以将HTable写客户端的自动flush关闭,这样可以批量写入数据到HBase,而不是有一条put就执行一次更新,只有当put填满客户端写缓存时,才实际向HBase服务端发起写请求。默认情况下auto flush是开启的。
2.2.2 Write Buffer
通过调用HTable.setWriteBufferSize(writeBufferSize)方法可以设置HTable客户端的写buffer大小,如果新设置的buffer小于当前写buffer中的数据时,buffer将会被flush到服务端。其中,writeBufferSize的单位是byte字节数,可以根据实际写入数据量的多少来设置该值。
2.2.3 WAL Flag
在HBae中,客户端向集群中的RegionServer提交数据时(Put/Delete操作),首先会先写WAL(Write Ahead Log)日志(即HLog,一个RegionSe··rver上的所有Region共享一个HLog),只有当WAL日志写成功后,再接着写MemStore,然后客户端被通知提交数据成功;如果写WAL日志失败,客户端则被通知提交失败。这样做的好处是可以做到RegionServer宕机后的数据恢复。
因此,对于相对不太重要的数据,可以在Put/Delete操作时,通过调用Put.setWriteToWAL(false)或Delete.setWriteToWAL(false)函数,放弃写WAL日志,从而提高数据写入的性能。
值得注意的是:谨慎选择关闭WAL日志,因为这样的话,一旦RegionServer宕机,Put/Delete的数据将会无法根据WAL日志进行恢复。
2.3 批量写
通过调用HTable.put(Put)方法可以将一个指定的row key记录写入HBase,同样HBase提供了另一个方法:通过调用HTable.put(List)方法可以将指定的row key列表,批量写入多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高,网络传输RTT高的情景下可能带来明显的性能提升。
2.4 多线程并发写
在客户端开启多个HTable写线程,每个写线程负责一个HTable对象的flush操作,这样结合定时flush和写buffer(writeBufferSize),可以既保证在数据量小的时候,数据可以在较短时间内被flush(如1秒内),同时又保证在数据量大的时候,写buffer一满就及时进行flush。下面给个具体的例子:
- for (int i = 0; i < threadN; i++) {
- Thread th = new Thread() {
- public void run() {
- while (true) {
- try {
- sleep(1000); //1 second
- } catch (InterruptedException e) {
- e.printStackTrace();
- }
- synchronized (wTableLog[i]) {
- try {
- wTableLog[i].flushCommits();
- } catch (IOException e) {
- e.printStackTrace();
- }
- }
- }
- }
- };
- th.setDaemon(true);
- th.start();
- }
HBase性能优化方法总结(三):读表操作
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法。有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客。
下面是本文总结的第三部分内容:读表操作相关的优化方法。
3. 读表操作
3.1 多HTable并发读
创建多个HTable客户端用于读操作,提高读数据的吞吐量,一个例子:
- static final Configuration conf = HBaseConfiguration.create();
- static final String table_log_name = “user_log”;
- rTableLog = new HTable[tableN];
- for (int i = 0; i < tableN; i++) {
- rTableLog[i] = new HTable(conf, table_log_name);
- rTableLog[i].setScannerCaching(50);
- }
3.2 HTable参数设置
3.2.1 Scanner Caching
hbase.client.scanner.caching配置项可以设置HBase scanner一次从服务端抓取的数据条数,默认情况下一次一条。通过将其设置成一个合理的值,可以减少scan过程中next()的时间开销,代价是scanner需要通过客户端的内存来维持这些被cache的行记录。
有三个地方可以进行配置:1)在HBase的conf配置文件中进行配置;2)通过调用HTable.setScannerCaching(int scannerCaching)进行配置;3)通过调用Scan.setCaching(int caching)进行配置。三者的优先级越来越高。
3.2.2 Scan Attribute Selection
scan时指定需要的Column Family,可以减少网络传输数据量,否则默认scan操作会返回整行所有Column Family的数据。
3.2.3 Close ResultScanner
通过scan取完数据后,记得要关闭ResultScanner,否则RegionServer可能会出现问题(对应的Server资源无法释放)。
3.3 批量读
通过调用HTable.get(Get)方法可以根据一个指定的row key获取一行记录,同样HBase提供了另一个方法:通过调用HTable.get(List)方法可以根据一个指定的row key列表,批量获取多行记录,这样做的好处是批量执行,只需要一次网络I/O开销,这对于对数据实时性要求高而且网络传输RTT高的情景下可能带来明显的性能提升。
3.4 多线程并发读
在客户端开启多个HTable读线程,每个读线程负责通过HTable对象进行get操作。下面是一个多线程并发读取HBase,获取店铺一天内各分钟PV值的例子:
- public class DataReaderServer {
- //获取店铺一天内各分钟PV值的入口函数
- public static ConcurrentHashMap<String, String> getUnitMinutePV(long uid, long startStamp, long endStamp){
- long min = startStamp;
- int count = (int)((endStamp - startStamp) / (60*1000));
- List<String> lst = new ArrayList<String>();
- for (int i = 0; i <= count; i++) {
- min = startStamp + i * 60 * 1000;
- lst.add(uid + "_" + min);
- }
- return parallelBatchMinutePV(lst);
- }
- //多线程并发查询,获取分钟PV值
-
- private static ConcurrentHashMap<String, String> parallelBatchMinutePV(List<String> lstKeys){
- ConcurrentHashMap<String, String> hashRet = new ConcurrentHashMap<String, String>();
- int parallel = 3;
- List<List<String>> lstBatchKeys = null;
- if (lstKeys.size() < parallel ){
- lstBatchKeys = new ArrayList<List<String>>(1);
- lstBatchKeys.add(lstKeys);
- }
- else{
- lstBatchKeys = new ArrayList<List<String>>(parallel);
- for(int i = 0; i < parallel; i++ ){
- List<String> lst = new ArrayList<String>();
- lstBatchKeys.add(lst);
- }
-
- for(int i = 0 ; i < lstKeys.size() ; i ++ ){
- lstBatchKeys.get(i%parallel).add(lstKeys.get(i));
- }
- }
-
- List<Future< ConcurrentHashMap<String, String> >> futures = new ArrayList<Future< ConcurrentHashMap<String, String> >>(5);
-
- ThreadFactoryBuilder builder = new ThreadFactoryBuilder();
- builder.setNameFormat("ParallelBatchQuery");
- ThreadFactory factory = builder.build();
- ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(lstBatchKeys.size(), factory);
-
- for(List<String> keys : lstBatchKeys){
- Callable< ConcurrentHashMap<String, String> > callable = new BatchMinutePVCallable(keys);
- FutureTask< ConcurrentHashMap<String, String> > future = (FutureTask< ConcurrentHashMap<String, String> >) executor.submit(callable);
- futures.add(future);
- }
- executor.shutdown();
-
- // Wait for all the tasks to finish
- try {
- boolean stillRunning = !executor.awaitTermination(
- 5000000, TimeUnit.MILLISECONDS);
- if (stillRunning) {
- try {
- executor.shutdownNow();
- } catch (Exception e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- }
- }
- } catch (InterruptedException e) {
- try {
- Thread.currentThread().interrupt();
- } catch (Exception e1) {
- // TODO Auto-generated catch block
- e1.printStackTrace();
- }
- }
-
- // Look for any exception
- for (Future f : futures) {
- try {
- if(f.get() != null)
- {
- hashRet.putAll((ConcurrentHashMap<String, String>)f.get());
- }
- } catch (InterruptedException e) {
- try {
- Thread.currentThread().interrupt();
- } catch (Exception e1) {
- // TODO Auto-generated catch block
- e1.printStackTrace();
- }
- } catch (ExecutionException e) {
- e.printStackTrace();
- }
- }
-
- return hashRet;
- }
- //一个线程批量查询,获取分钟PV值
- protected static ConcurrentHashMap<String, String> getBatchMinutePV(List<String> lstKeys){
- ConcurrentHashMap<String, String> hashRet = null;
- List<Get> lstGet = new ArrayList<Get>();
- String[] splitValue = null;
- for (String s : lstKeys) {
- splitValue = s.split("_");
- long uid = Long.parseLong(splitValue[0]);
- long min = Long.parseLong(splitValue[1]);
- byte[] key = new byte[16];
- Bytes.putLong(key, 0, uid);
- Bytes.putLong(key, 8, min);
- Get g = new Get(key);
- g.addFamily(fp);
- lstGet.add(g);
- }
- Result[] res = null;
- try {
- res = tableMinutePV[rand.nextInt(tableN)].get(lstGet);
- } catch (IOException e1) {
- logger.error("tableMinutePV exception, e=" + e1.getStackTrace());
- }
-
- if (res != null && res.length > 0) {
- hashRet = new ConcurrentHashMap<String, String>(res.length);
- for (Result re : res) {
- if (re != null && !re.isEmpty()) {
- try {
- byte[] key = re.getRow();
- byte[] value = re.getValue(fp, cp);
- if (key != null && value != null) {
- hashRet.put(String.valueOf(Bytes.toLong(key,
- Bytes.SIZEOF_LONG)), String.valueOf(Bytes
- .toLong(value)));
- }
- } catch (Exception e2) {
- logger.error(e2.getStackTrace());
- }
- }
- }
- }
-
- return hashRet;
- }
}
//调用接口类,实现Callable接口
- class BatchMinutePVCallable implements Callable<ConcurrentHashMap<String, String>>{
- private List<String> keys;
-
- public BatchMinutePVCallable(List<String> lstKeys ) {
- this.keys = lstKeys;
- }
-
- public ConcurrentHashMap<String, String> call() throws Exception {
- return DataReadServer.getBatchMinutePV(keys);
- }
- }
3.5 缓存查询结果
对于频繁查询HBase的应用场景,可以考虑在应用程序中做缓存,当有新的查询请求时,首先在缓存中查找,如果存在则直接返回,不再查询HBase;否则对HBase发起读请求查询,然后在应用程序中将查询结果缓存起来。至于缓存的替换策略,可以考虑LRU等常用的策略。
3.6 Blockcache
HBase上Regionserver的内存分为两个部分,一部分作为Memstore,主要用来写;另外一部分作为BlockCache,主要用于读。
写请求会先写入Memstore,Regionserver会给每个region提供一个Memstore,当Memstore满64MB以后,会启动 flush刷新到磁盘。当Memstore的总大小超过限制时(heapsize * hbase.regionserver.global.memstore.upperLimit * 0.9),会强行启动flush进程,从最大的Memstore开始flush直到低于限制。
读请求先到Memstore中查数据,查不到就到BlockCache中查,再查不到就会到磁盘上读,并把读的结果放入BlockCache。由于BlockCache采用的是LRU策略,因此BlockCache达到上限(heapsize * hfile.block.cache.size * 0.85)后,会启动淘汰机制,淘汰掉最老的一批数据。
一个Regionserver上有一个BlockCache和N个Memstore,它们的大小之和不能大于等于heapsize * 0.8,否则HBase不能启动。默认BlockCache为0.2,而Memstore为0.4。对于注重读响应时间的系统,可以将 BlockCache设大些,比如设置BlockCache=0.4,Memstore=0.39,以加大缓存的命中率。
有关BlockCache机制,请参考这里:HBase的Block cache,HBase的blockcache机制,hbase中的缓存的计算与使用。
HTable和HTablePool使用注意事项
HTable和HTablePool都是HBase客户端API的一部分,可以使用它们对HBase表进行CRUD操作。下面结合在项目中的应用情况,对二者使用过程中的注意事项做一下概括总结。
Configuration conf = HBaseConfiguration.create();
try (Connection connection = ConnectionFactory.createConnection(conf)) {
try (Table table = connection.getTable(TableName.valueOf(tablename)) {
// use table as needed, the table returned is lightweight
}
}
HTable
HTable是HBase客户端与HBase服务端通讯的Java API对象,客户端可以通过HTable对象与服务端进行CRUD操作(增删改查)。它的创建很简单:
Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, “tablename”);
//TODO CRUD Operation……
HTable使用时的一些注意事项:
- public void createUser(String username, String firstName, String lastName, String email, String password, String roles) throws IOException {
- HTable table = rm.getTable(UserTable.NAME);
- Put put = new Put(Bytes.toBytes(username));
- put.add(UserTable.DATA_FAMILY, UserTable.FIRSTNAME,
- Bytes.toBytes(firstName));
- put.add(UserTable.DATA_FAMILY, UserTable.LASTNAME,
- Bytes.toBytes(lastName));
- put.add(UserTable.DATA_FAMILY, UserTable.EMAIL, Bytes.toBytes(email));
- put.add(UserTable.DATA_FAMILY, UserTable.CREDENTIALS,
- Bytes.toBytes(password));
- put.add(UserTable.DATA_FAMILY, UserTable.ROLES, Bytes.toBytes(roles));
- table.put(put);
- table.flushCommits();
- rm.putTable(table);
- }
Hbase和DBMS比较:
查询数据不灵活:
1、 不能使用column之间过滤查询
2、 不支持全文索引。使用ES和hbase整合完成全文搜索。
a) 使用MR批量读取hbase中的数据,在ES里面建立索引(no store)之保存rowkey的值。
b) 根据关键词从索引中搜索到rowkey(分页)
c) 根据rowkey从hbase查询所有数据
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。