赞
踩
文件位置 “basicsr/data/realesrgan_dataset.py”
# ------------------------ Generate kernels (used in the first degradation) 一阶退化过程的模糊核------------------------ # kernel_size = random.choice(self.kernel_range) # 从7到21的奇数中,随机选取一个作为核的尺寸 # ------使用sic滤波器------ if np.random.uniform() < self.opt['sinc_prob']: # sinc_prob:0.1 kernel_range:从(0, 1)的均匀分布中随机取样 # this sinc filter setting is for kernels ranging from [7, 21] if kernel_size < 13: # 根据sinc核的大小,选择不同的参数ω omega_c = np.random.uniform(np.pi / 3, np.pi) else: omega_c = np.random.uniform(np.pi / 5, np.pi) # 生成sinc滤波器 kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) else: # ------使用其他的模糊算法:iso/aniso:各向同性/异性、generalized_iso/generalized_aniso:广义各向同性/异性、plateau_iso/plateau_aniso平台各向同性/异性------ kernel = random_mixed_kernels( self.kernel_list, self.kernel_prob, kernel_size, self.blur_sigma, self.blur_sigma, [-math.pi, math.pi], self.betag_range, self.betap_range, noise_range=None) # pad kernel 为了保证模糊核的尺寸为固定的21*21 pad_size = (21 - kernel_size) // 2 kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) # ------------------------ Generate kernels (used in the second degradation) 二阶退化过程的模糊核------------------------ # kernel_size = random.choice(self.kernel_range) # ------使用sic滤波器------ if np.random.uniform() < self.opt['sinc_prob2']: # sinc_prob2: 0.1 if kernel_size < 13: omega_c = np.random.uniform(np.pi / 3, np.pi) else: omega_c = np.random.uniform(np.pi / 5, np.pi) kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) else: # ------使用其他的模糊算法:iso/aniso:各向同性/异性、generalized_iso/generalized_aniso:广义各向同性/异性、plateau_iso/plateau_aniso平台各向同性/异性------ kernel2 = random_mixed_kernels( self.kernel_list2, self.kernel_prob2, kernel_size, self.blur_sigma2, self.blur_sigma2, [-math.pi, math.pi], self.betag_range2, self.betap_range2, noise_range=None) # pad kernel pad_size = (21 - kernel_size) // 2 kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) # 最终blur核尺寸为21*21 # ------------------------------------- the final sinc kernel (最终用于模拟振铃伪影核过冲伪影的sinc滤波器)------------------------------------- # if np.random.uniform() < self.opt['final_sinc_prob']: # final_sinc_prob:0.8 kernel_size = random.choice(self.kernel_range) omega_c = np.random.uniform(np.pi / 3, np.pi) sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21) # 最终sinc滤波器尺寸为21*21 sinc_kernel = torch.FloatTensor(sinc_kernel) else: sinc_kernel = self.pulse_tensor # 一个全为1的卷积核,对图像无影响 # BGR to RGB, HWC to CHW, numpy to tensor 将数据转换为张量tensor img_gt = img2tensor([img_gt], bgr2rgb=True, float32=True)[0] kernel = torch.FloatTensor(kernel) kernel2 = torch.FloatTensor(kernel2) return_d = {'gt': img_gt, 'kernel1': kernel, 'kernel2': kernel2, 'sinc_kernel': sinc_kernel, 'gt_path': gt_path} return return_d
结果返回一字典dict,其中包含
{
'gt': img_gt, # ground truth图像对应的张量tensor[c, h, w]
'kernel1': kernel, # 用于一阶退化过程的模糊核
'kernel2': kernel2, # 用于二阶退化过程的模糊核
'sinc_kernel': sinc_kernel, # 用于最终模拟振铃伪影和过冲伪影的sinc滤波器
'gt_path': gt_path # ground truth图像的存放路径
}
文件位置 “basicsr/models/realesrgan_model.py”
def feed_data(self, data): """Accept data from dataloader, and then add two-order degradations to obtain LQ images. 从dataloader中接受数据,然后添加二阶退化过程去获取 LQ 图像。 """ if self.is_train and self.opt.get('high_order_degradation', True): # training data synthesis self.gt = data['gt'].to(self.device) self.gt_usm = self.usm_sharpener(self.gt) self.kernel1 = data['kernel1'].to(self.device) self.kernel2 = data['kernel2'].to(self.device) self.sinc_kernel = data['sinc_kernel'].to(self.device) ori_h, ori_w = self.gt.size()[2:4] # ----------------------- The first degradation process ----------------------- # # blur 公式(1)中的模糊操作 out = filter2D(self.gt_usm, self.kernel1) # 对GT图像先进锐化操作,然后与模糊核做卷积运算 # random resize 公式(1)中的缩放操作 updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob'])[0] # resize_prob: [0.2, 0.7, 0.1] if updown_type == 'up': # 如果r是上采样,则放大比例为:[1, 1.5]的均匀分布 scale = np.random.uniform(1, self.opt['resize_range'][1]) # resize_range: [0.15, 1.5] elif updown_type == 'down': # 如果r是下采样,则缩放比例为:[0.15, 1]的均匀分布 scale = np.random.uniform(self.opt['resize_range'][0], 1) else: scale = 1 mode = random.choice(['area', 'bilinear', 'bicubic']) # 下采样操作的三种算法 out = F.interpolate(out, scale_factor=scale, mode=mode) # add noise # 公式(1)中的添加噪声操作 gray_noise_prob = self.opt['gray_noise_prob'] if np.random.uniform() < self.opt['gaussian_noise_prob']: # gaussian_noise_prob: 0.5 out = random_add_gaussian_noise_pt( # 使用高斯噪声 out, sigma_range=self.opt['noise_range'], clip=True, rounds=False, gray_prob=gray_noise_prob) else: out = random_add_poisson_noise_pt( # 使用泊松噪声 out, scale_range=self.opt['poisson_scale_range'], gray_prob=gray_noise_prob, # gray_noise_prob: 0.4 灰度噪声默认40%, 颜色噪声为60% clip=True, rounds=False) # JPEG compression # 公式(1)中的JPEG压缩操作 jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range']) # torch.clamp(): 将输入input张量每个元素的范围限制到区间 [min,max],返回结果到一个新张量。 out = torch.clamp(out, 0, 1) # clamp to [0, 1], otherwise JPEGer will result in unpleasant artifacts out = self.jpeger(out, quality=jpeg_p) # ----------------------- The second degradation process ----------------------- # # blur 模糊 if np.random.uniform() < self.opt['second_blur_prob']: # second_blur_prob: 0.8 out = filter2D(out, self.kernel2) # random resize 下采样 updown_type = random.choices(['up', 'down', 'keep'], self.opt['resize_prob2'])[0] # resize_prob2: [0.3, 0.4, 0.3] if updown_type == 'up': # 上采样: [1, 1,2] scale = np.random.uniform(1, self.opt['resize_range2'][1]) # resize_range2: [0.3, 1.2] elif updown_type == 'down': # 下采样: [0.3, 1] scale = np.random.uniform(self.opt['resize_range2'][0], 1) else: scale = 1 mode = random.choice(['area', 'bilinear', 'bicubic']) out = F.interpolate( out, size=(int(ori_h / self.opt['scale'] * scale), int(ori_w / self.opt['scale'] * scale)), mode=mode) # add noise 噪声 gray_noise_prob = self.opt['gray_noise_prob2'] # gaussian_noise_prob2: 0.5 if np.random.uniform() < self.opt['gaussian_noise_prob2']: out = random_add_gaussian_noise_pt( out, sigma_range=self.opt['noise_range2'], clip=True, rounds=False, gray_prob=gray_noise_prob) else: out = random_add_poisson_noise_pt( out, scale_range=self.opt['poisson_scale_range2'], gray_prob=gray_noise_prob, clip=True, rounds=False) # JPEG compression + the final sinc filter JPEG压缩+sinc滤波器 # We also need to resize images to desired sizes. We group [resize back + sinc filter] together # as one operation. # We consider two orders: # 1. [resize back + sinc filter] + JPEG compression # 2. JPEG compression + [resize back + sinc filter] # Empirically, we find other combinations (sinc + JPEG + Resize) will introduce twisted lines. # 我们发现其他组合(sinc + JPEG + Resize)会引入扭曲线。 if np.random.uniform() < 0.5: # resize back + the final sinc filter mode = random.choice(['area', 'bilinear', 'bicubic']) out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode) out = filter2D(out, self.sinc_kernel) # JPEG compression jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2']) out = torch.clamp(out, 0, 1) out = self.jpeger(out, quality=jpeg_p) else: # JPEG compression jpeg_p = out.new_zeros(out.size(0)).uniform_(*self.opt['jpeg_range2']) out = torch.clamp(out, 0, 1) out = self.jpeger(out, quality=jpeg_p) # resize back + the final sinc filter mode = random.choice(['area', 'bilinear', 'bicubic']) out = F.interpolate(out, size=(ori_h // self.opt['scale'], ori_w // self.opt['scale']), mode=mode) out = filter2D(out, self.sinc_kernel) # clamp and round #将图像的像素值限制在[0, 1]的范围内,同时进行四舍五入处理 self.lq = torch.clamp((out * 255.0).round(), 0, 255) / 255. # random crop 随机裁剪给定的高分辨率图像和低分辨率图像,使它们具有相同的裁剪区域 gt_size = self.opt['gt_size'] (self.gt, self.gt_usm), self.lq = paired_random_crop([self.gt, self.gt_usm], self.lq, gt_size, self.opt['scale']) # training pair pool self._dequeue_and_enqueue() # sharpen self.gt again, as we have changed the self.gt with self._dequeue_and_enqueue self.gt_usm = self.usm_sharpener(self.gt) self.lq = self.lq.contiguous() # for the warning: grad and param do not obey the gradient layout contract else: # for paired training or validation self.lq = data['lq'].to(self.device) if 'gt' in data: self.gt = data['gt'].to(self.device) self.gt_usm = self.usm_sharpener(self.gt)
文件位置 “basicsr/archs/discriminator_arch.py”
class UNetDiscriminatorSN(nn.Module): """Defines a U-Net discriminator with spectral normalization (SN) 具有SN光谱归一化的U-Net判别器设计 It is used in Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data. Arg: num_in_ch (int): Channel number of inputs. Default: 3. 输入通道数,默认3 num_feat (int): Channel number of base intermediate features. Default: 64. 中间特征的通道数,默认是64 skip_connection (bool): Whether to use skip connections between U-Net. Default: True. 是否使用跳跃连接 """ def __init__(self, num_in_ch, num_feat=64, skip_connection=True): super(UNetDiscriminatorSN, self).__init__() self.skip_connection = skip_connection norm = spectral_norm # the first convolution (1次卷积操作) self.conv0 = nn.Conv2d(num_in_ch, num_feat, kernel_size=3, stride=1, padding=1) # downsample (3次下采样操作) self.conv1 = norm(nn.Conv2d(num_feat, num_feat * 2, 4, 2, 1, bias=False)) # [n, 64, h, w] --> [n, 128, h//2, w//2] self.conv2 = norm(nn.Conv2d(num_feat * 2, num_feat * 4, 4, 2, 1, bias=False)) # [n, 128, h//2, w//2] --> [n, 256, h//4, w//4] self.conv3 = norm(nn.Conv2d(num_feat * 4, num_feat * 8, 4, 2, 1, bias=False)) # [n, 256, h//4, w//4] --> [n, 512, h//8, w//8] # upsample (3次上采样操作) self.conv4 = norm(nn.Conv2d(num_feat * 8, num_feat * 4, 3, 1, 1, bias=False)) # 512 --> 256 self.conv5 = norm(nn.Conv2d(num_feat * 4, num_feat * 2, 3, 1, 1, bias=False)) # 256 --> 128 self.conv6 = norm(nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1, bias=False)) # 128 --> 64 # extra convolutions self.conv7 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False)) self.conv8 = norm(nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=False)) self.conv9 = nn.Conv2d(num_feat, 1, 3, 1, 1) def forward(self, x): # x[n, 3, h, w] # downsample x0 = F.leaky_relu(self.conv0(x), negative_slope=0.2, inplace=True) # [n, 3, h, w] --> [n, 64, h, w] x1 = F.leaky_relu(self.conv1(x0), negative_slope=0.2, inplace=True) # [n, 64, h, w] --> [n, 128, h//2, w//2] x2 = F.leaky_relu(self.conv2(x1), negative_slope=0.2, inplace=True) # [n, 128, h//2, w//2] --> [n, 256, h//4, w//4] x3 = F.leaky_relu(self.conv3(x2), negative_slope=0.2, inplace=True) # [n, 256, h//4, w//4] --> [n, 512, h//8, w//8] # upsample x3 = F.interpolate(x3, scale_factor=2, mode='bilinear', align_corners=False) # [n, 512, h//8, w//8] --> [n, 512, h//4, w//4] x4 = F.leaky_relu(self.conv4(x3), negative_slope=0.2, inplace=True) # [n, 512, h//8, w//8] --> [n, 256, h//4, w//4] if self.skip_connection: x4 = x4 + x2 # [n, 256, h//4, w//4] + [n, 256, h//4, w//4] = [n, 256, h//4, w//4] x4 = F.interpolate(x4, scale_factor=2, mode='bilinear', align_corners=False) # [n, 256, h//4, w//4] --> [n, 256, h//2, w//2] x5 = F.leaky_relu(self.conv5(x4), negative_slope=0.2, inplace=True) # [n, 256, h//2, w//2] --> [n, 128, h//2, w//2] if self.skip_connection: x5 = x5 + x1 # [n, 128, h//2, w//2] + [n, 128, h//2, w//2] = [n, 128, h//2, w//2] x5 = F.interpolate(x5, scale_factor=2, mode='bilinear', align_corners=False) # [n, 128, h//2, w//2] --> [n, 128, h, w] x6 = F.leaky_relu(self.conv6(x5), negative_slope=0.2, inplace=True) # [n, 128, h, w] --> [n, 64, h, w] if self.skip_connection: x6 = x6 + x0 # [n, 64, h, w] --> [n, 64, h, w] = [n, 64, h, w] # extra convolutions out = F.leaky_relu(self.conv7(x6), negative_slope=0.2, inplace=True) # [n, 64, h, w] --> [n, 64, h, w] out = F.leaky_relu(self.conv8(out), negative_slope=0.2, inplace=True) # [n, 64, h, w] --> [n, 64, h, w] out = self.conv9(out) # [n, 64, h, w] --> [n, 1, h, w] return out
测试
img = torch.randn(32, 3, 256, 256)
net_d = UNetDiscriminatorSN(3, 64)
img_d = net_d(img)
print(img_d.shape)
# summary(net_d, (3, 256, 256), 32, device='cpu') # 使用cpu调试 (运行时间反而更快)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
summary(net_d.to(device), (3, 256, 256), 32) # 使用GPU调试
运行结果:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。