赞
踩
此篇将介绍如何利用tf2来使用传感器数据(如单声道和立体声摄像机以及雷达)。
假设我们创建了一只海龟叫turtle3,它的里程计不大好用,为了监视turtle3的活动轨迹,有台头顶摄像机被安装到该海龟的背上(负碑的赑屃),并且实时发布相对于世界坐标系的PointStamped消息(包含位姿和时间)。
有只叫turtle1的海龟想要知道turtle3相对自己的位姿(在turtle1坐标系中)。
于是乎turtle1订阅了摄像机发布的关于turtle3位姿的主题,并等待可用的转换数据以便执行其他操作。为了方便实现这个目标,我们可以利用tf2_ros::MessageFilter。
tf2_ros::MessageFilter会订阅任何带有头(header)的消息并缓存起来,直到可以将该消息从源坐标系变换到目标坐标系为止。
需要实现两个节点,一个python实现一个C++实现,其中python的实现需要在learning_tf2_py功能包下,如果前期一直用的learning_tf2_cpp包而没有此包的话,请在工作空间根路径的src下执行如下命令:
$ros2 pkg create --build-type ament_python --license Apache-2.0 -- learning_tf2_py
我们先实现一个广播turtle3 PointStamped位置消息的节点代码(python)。
进入learning_tf2_py包路径下src/learning_tf2_py/learning_tf2_py,执行如下命令下载传感器消息广播节点的例子代码turtle_tf2_message_broadcaster.py:
$wget https://raw.githubusercontent.com/ros/geometry_tutorials/ros2/turtle_tf2_py/turtle_tf2_py/turtle_tf2_message_broadcaster.py
内容如下:
- from geometry_msgs.msg import PointStamped
- from geometry_msgs.msg import Twist
-
- import rclpy
- from rclpy.node import Node
-
- from turtlesim.msg import Pose
- from turtlesim.srv import Spawn
-
-
- class PointPublisher(Node):
-
- def __init__(self):
- super().__init__('turtle_tf2_message_broadcaster')
-
- # Create a client to spawn a turtle
- self.spawner = self.create_client(Spawn, 'spawn')
- # Boolean values to store the information
- # if the service for spawning turtle is available
- self.turtle_spawning_service_ready = False
- # if the turtle was successfully spawned
- self.turtle_spawned = False
- # if the topics of turtle3 can be subscribed
- self.turtle_pose_cansubscribe = False
-
- self.timer = self.create_timer(1.0, self.on_timer)
-
- def on_timer(self):
- if self.turtle_spawning_service_ready:
- if self.turtle_spawned:
- self.turtle_pose_cansubscribe = True
- else:
- if self.result.done():
- self.get_logger().info(
- f'Successfully spawned {self.result.result().name}')
- self.turtle_spawned = True
- else:
- self.get_logger().info('Spawn is not finished')
- else:
- if self.spawner.service_is_ready():
- # Initialize request with turtle name and coordinates
- # Note that x, y and theta are defined as floats in turtlesim/srv/Spawn
- request = Spawn.Request()
- request.name = 'turtle3'
- request.x = 4.0
- request.y = 2.0
- request.theta = 0.0
- # Call request
- self.result = self.spawner.call_async(request)
- self.turtle_spawning_service_ready = True
- else:
- # Check if the service is ready
- self.get_logger().info('Service is not ready')
-
- if self.turtle_pose_cansubscribe:
- self.vel_pub = self.create_publisher(Twist, 'turtle3/cmd_vel', 10)
- self.sub = self.create_subscription(Pose, 'turtle3/pose', self.handle_turtle_pose, 10)
- self.pub = self.create_publisher(PointStamped, 'turtle3/turtle_point_stamped', 10)
-
- def handle_turtle_pose(self, msg):
- vel_msg = Twist()
- vel_msg.linear.x = 1.0
- vel_msg.angular.z = 1.0
- self.vel_pub.publish(vel_msg)
-
- ps = PointStamped()
- ps.header.stamp = self.get_clock().now().to_msg()
- ps.header.frame_id = 'world'
- ps.point.x = msg.x
- ps.point.y = msg.y
- ps.point.z = 0.0
- self.pub.publish(ps)
-
-
- def main():
- rclpy.init()
- node = PointPublisher()
- try:
- rclpy.spin(node)
- except KeyboardInterrupt:
- pass
-
- rclpy.shutdown()
- # Initialize request with turtle name and coordinates
- # Note that x, y and theta are defined as floats in turtlesim/srv/Spawn
- request = Spawn.Request()
- request.name = 'turtle3'
- request.x = 4.0
- request.y = 2.0
- request.theta = 0.0
- # Call request
- self.result = self.spawner.call_async(request)
on_timer回调函数中,我们通过异步调用turtlesim中的Spawn服务孵化出turtle3,并给予turtle3初始位置(4, 2, 0)。
- self.vel_pub = self.create_publisher(Twist, '/turtle3/cmd_vel', 10)
- self.sub = self.create_subscription(Pose, '/turtle3/pose', self.handle_turtle_pose, 10)
- self.pub = self.create_publisher(PointStamped, '/turtle3/turtle_point_stamped', 10)
之后节点发布主题/turtle3/cmd_vel及主题/turtle3/turtle_point_stamped数据,并订阅了/turtle3/pose主题,当进来消息后会调用handle_turtle_pose回调函数来处理这些消息。
- vel_msg = Twist()
- vel_msg.linear.x = 1.0
- vel_msg.angular.z = 1.0
- self.vel_pub.publish(vel_msg)
-
- ps = PointStamped()
- ps.header.stamp = self.get_clock().now().to_msg()
- ps.header.frame_id = 'world'
- ps.point.x = msg.x
- ps.point.y = msg.y
- ps.point.z = 0.0
- self.pub.publish(ps)
最后,在回调函数handle_turtle_pose中,我们初始化了turtle3的Twist类型消息(半径为1米的圆周运动)并发布了它们,接着我们将接收到的Pose消息解析并填充到PointStamped消息中,最后发布了这个PointStamped类型消息。
在learning_tf2_py包中的launch文件夹内创建turtle_tf2_sensor_message_launch.py文件用来运行我们的例子。
- from launch import LaunchDescription
- from launch.actions import DeclareLaunchArgument
- from launch_ros.actions import Node
-
-
- def generate_launch_description():
- return LaunchDescription([
- DeclareLaunchArgument(
- 'target_frame', default_value='turtle1',
- description='Target frame name.'
- ),
- Node(
- package='turtlesim',
- executable='turtlesim_node',
- name='sim',
- output='screen'
- ),
- Node(
- package='turtle_tf2_py',
- executable='turtle_tf2_broadcaster',
- name='broadcaster1',
- parameters=[
- {'turtlename': 'turtle1'}
- ]
- ),
- Node(
- package='turtle_tf2_py',
- executable='turtle_tf2_broadcaster',
- name='broadcaster2',
- parameters=[
- {'turtlename': 'turtle3'}
- ]
- ),
- Node(
- package='turtle_tf2_py',
- executable='turtle_tf2_message_broadcaster',
- name='message_broadcaster',
- ),
- ])
我们必须在src/learning_tf2_py路径下的setup.py文件中添加入口点才能让ros2 run命令启动我们的节点。将下面语句添加到'console_scripts':括弧内:
'turtle_tf2_message_broadcaster = learning_tf2_py.turtle_tf2_message_broadcaster:main',
另外为了使ros2 launch能够通过包名找到上面的launch文件,我们还需添加相关引入模块及安装信息(否则就会提示在share下找不到launch文件,因为那个路径下根本就未安装成功):
- import os
- from glob import glob
- from setuptools import find_packages, setup
-
- package_name = 'launch_tutorial'
-
- setup(
- # Other parameters ...
- data_files=[
- # ... Other data files
- # Include all launch files.
- (os.path.join('share', package_name, 'launch'), glob(os.path.join('launch', '*launch.[pxy][yma]*')))
- ]
- )
完整的setup.py信息如下:
- import os
- from glob import glob
- from setuptools import find_packages, setup
-
- package_name = 'learning_tf2_py'
-
- setup(
- name=package_name,
- version='0.0.0',
- packages=find_packages(exclude=['test']),
- data_files=[
- ('share/ament_index/resource_index/packages',
- ['resource/' + package_name]),
- ('share/' + package_name, ['package.xml']),
- (os.path.join('share', package_name, 'launch'), glob(os.path.join('launch', '*launch.[pxy][yma]*')))
- ],
- install_requires=['setuptools'],
- zip_safe=True,
- maintainer='mike',
- maintainer_email='mike@todo.todo',
- description='TODO: Package description',
- license='Apache-2.0',
- tests_require=['pytest'],
- entry_points={
- 'console_scripts': [
- 'turtle_tf2_message_broadcaster = learning_tf2_py.turtle_tf2_message_broadcaster:main',
- ],
- },
- )
进入工作空间根路径,分别执行如下命令进行依赖检查和最终包的构建工作。
$rosdep install -i --from-path src --rosdistro iron -y
$colcon build --packages-select learning_tf2_py
现在,为了可靠地在turtle1的坐标系下获取turtle3的流式PointStamped
数据,我们将创建消息过滤器/监听器节点的源文件。
进入src/learning_tf2_cpp/src路径,执行下面的命令下载turtle_tf2_message_filter.cpp文件:
$wget https://raw.githubusercontent.com/ros/geometry_tutorials/ros2/turtle_tf2_cpp/src/turtle_tf2_message_filter.cpp
内容如下:
- #include <chrono>
- #include <memory>
- #include <string>
-
- #include "geometry_msgs/msg/point_stamped.hpp"
- #include "message_filters/subscriber.h"
- #include "rclcpp/rclcpp.hpp"
- #include "tf2_ros/buffer.h"
- #include "tf2_ros/create_timer_ros.h"
- #include "tf2_ros/message_filter.h"
- #include "tf2_ros/transform_listener.h"
- #ifdef TF2_CPP_HEADERS
- #include "tf2_geometry_msgs/tf2_geometry_msgs.hpp"
- #else
- #include "tf2_geometry_msgs/tf2_geometry_msgs.h"
- #endif
-
- using namespace std::chrono_literals;
-
- class PoseDrawer : public rclcpp::Node
- {
- public:
- PoseDrawer()
- : Node("turtle_tf2_pose_drawer")
- {
- // Declare and acquire `target_frame` parameter
- target_frame_ = this->declare_parameter<std::string>("target_frame", "turtle1");
-
- std::chrono::duration<int> buffer_timeout(1);
-
- tf2_buffer_ = std::make_shared<tf2_ros::Buffer>(this->get_clock());
- // Create the timer interface before call to waitForTransform,
- // to avoid a tf2_ros::CreateTimerInterfaceException exception
- auto timer_interface = std::make_shared<tf2_ros::CreateTimerROS>(
- this->get_node_base_interface(),
- this->get_node_timers_interface());
- tf2_buffer_->setCreateTimerInterface(timer_interface);
- tf2_listener_ =
- std::make_shared<tf2_ros::TransformListener>(*tf2_buffer_);
-
- point_sub_.subscribe(this, "/turtle3/turtle_point_stamped");
- tf2_filter_ = std::make_shared<tf2_ros::MessageFilter<geometry_msgs::msg::PointStamped>>(
- point_sub_, *tf2_buffer_, target_frame_, 100, this->get_node_logging_interface(),
- this->get_node_clock_interface(), buffer_timeout);
- // Register a callback with tf2_ros::MessageFilter to be called when transforms are available
- tf2_filter_->registerCallback(&PoseDrawer::msgCallback, this);
- }
-
- private:
- void msgCallback(const geometry_msgs::msg::PointStamped::SharedPtr point_ptr)
- {
- geometry_msgs::msg::PointStamped point_out;
- try {
- tf2_buffer_->transform(*point_ptr, point_out, target_frame_);
- RCLCPP_INFO(
- this->get_logger(), "Point of turtle3 in frame of turtle1: x:%f y:%f z:%f\n",
- point_out.point.x,
- point_out.point.y,
- point_out.point.z);
- } catch (const tf2::TransformException & ex) {
- RCLCPP_WARN(
- // Print exception which was caught
- this->get_logger(), "Failure %s\n", ex.what());
- }
- }
-
- std::string target_frame_;
- std::shared_ptr<tf2_ros::Buffer> tf2_buffer_;
- std::shared_ptr<tf2_ros::TransformListener> tf2_listener_;
- message_filters::Subscriber<geometry_msgs::msg::PointStamped> point_sub_;
- std::shared_ptr<tf2_ros::MessageFilter<geometry_msgs::msg::PointStamped>> tf2_filter_;
- };
-
- int main(int argc, char * argv[])
- {
- rclcpp::init(argc, argv);
- rclcpp::spin(std::make_shared<PoseDrawer>());
- rclcpp::shutdown();
- return 0;
- }
- #include "geometry_msgs/msg/point_stamped.hpp"
- #include "message_filters/subscriber.h"
- #include "rclcpp/rclcpp.hpp"
- #include "tf2_ros/buffer.h"
- #include "tf2_ros/create_timer_ros.h"
- #include "tf2_ros/message_filter.h"
- #include "tf2_ros/transform_listener.h"
- #ifdef TF2_CPP_HEADERS
- #include "tf2_geometry_msgs/tf2_geometry_msgs.hpp"
- #else
- #include "tf2_geometry_msgs/tf2_geometry_msgs.h"
- #endif
首先需包含tf2_ros::MessageFilter、tf2、ros2等相关头文件,以使能相关API。
- std::string target_frame_;
- std::shared_ptr<tf2_ros::Buffer> tf2_buffer_;
- std::shared_ptr<tf2_ros::TransformListener> tf2_listener_;
- message_filters::Subscriber<geometry_msgs::msg::PointStamped> point_sub_;
- std::shared_ptr<tf2_ros::MessageFilter<geometry_msgs::msg::PointStamped>> tf2_filter_;
其次声明有关tf2_ros::Buffer、tf2_ros::TransformListener及tf2_ros::MessageFilter的全局变量。
- PoseDrawer()
- : Node("turtle_tf2_pose_drawer")
- {
- // Declare and acquire `target_frame` parameter
- target_frame_ = this->declare_parameter<std::string>("target_frame", "turtle1");
-
- std::chrono::duration<int> buffer_timeout(1);
-
- tf2_buffer_ = std::make_shared<tf2_ros::Buffer>(this->get_clock());
- // Create the timer interface before call to waitForTransform,
- // to avoid a tf2_ros::CreateTimerInterfaceException exception
- auto timer_interface = std::make_shared<tf2_ros::CreateTimerROS>(
- this->get_node_base_interface(),
- this->get_node_timers_interface());
- tf2_buffer_->setCreateTimerInterface(timer_interface);
- tf2_listener_ =
- std::make_shared<tf2_ros::TransformListener>(*tf2_buffer_);
-
- point_sub_.subscribe(this, "/turtle3/turtle_point_stamped");
- tf2_filter_ = std::make_shared<tf2_ros::MessageFilter<geometry_msgs::msg::PointStamped>>(
- point_sub_, *tf2_buffer_, target_frame_, 100, this->get_node_logging_interface(),
- this->get_node_clock_interface(), buffer_timeout);
- // Register a callback with tf2_ros::MessageFilter to be called when transforms are available
- tf2_filter_->registerCallback(&PoseDrawer::msgCallback, this);
- }
第三,ROS 2中的message_filters::Subscriber
必须使用主题("/turtle3/turtle_point_stamped")进行初始化。同时,tf2_ros::MessageFilter
也必须使用那个Subscriber
对象(point_sub_)进行初始化。在MessageFilter
构造函数中值得注意的其他参数包括目标帧(target_frame
)和回调函数(callback
)。目标帧是确保canTransform
能够成功执行的目标坐标系。当数据准备就绪时,回调函数(msgCallback)就会被调用。
- private:
- void msgCallback(const geometry_msgs::msg::PointStamped::SharedPtr point_ptr)
- {
- geometry_msgs::msg::PointStamped point_out;
- try {
- tf2_buffer_->transform(*point_ptr, point_out, target_frame_);
- RCLCPP_INFO(
- this->get_logger(), "Point of turtle3 in frame of turtle1: x:%f y:%f z:%f\n",
- point_out.point.x,
- point_out.point.y,
- point_out.point.z);
- } catch (const tf2::TransformException & ex) {
- RCLCPP_WARN(
- // Print exception which was caught
- this->get_logger(), "Failure %s\n", ex.what());
- }
- }
最后,在回调函数msgCallback中,当数据准备好的时候会调用transform函数将数据转换为目标坐标系视角下的对应数据,并会将结果数据输出到控制台。
我们需要增加下面两行内容到package.xml:
- <depend>message_filters</depend>
- <depend>tf2_geometry_msgs</depend>
同样,CMakeLists.txt文件也需添加下面两行内容:
- find_package(message_filters REQUIRED)
- find_package(tf2_geometry_msgs REQUIRED)
下面内容是为了处理不同版本的ROS:
- if(TARGET tf2_geometry_msgs::tf2_geometry_msgs)
- get_target_property(_include_dirs tf2_geometry_msgs::tf2_geometry_msgs INTERFACE_INCLUDE_DIRECTORIES)
- else()
- set(_include_dirs ${tf2_geometry_msgs_INCLUDE_DIRS})
- endif()
-
- find_file(TF2_CPP_HEADERS
- NAMES tf2_geometry_msgs.hpp
- PATHS ${_include_dirs}
- NO_CACHE
- PATH_SUFFIXES tf2_geometry_msgs
- )
接着,我们还需加上下面内容,我们将消息过滤器/监听器节点可执行文件命名为turtle_tf2_message_filter:
- add_executable(turtle_tf2_message_filter src/turtle_tf2_message_filter.cpp)
- ament_target_dependencies(
- turtle_tf2_message_filter
- geometry_msgs
- message_filters
- rclcpp
- tf2
- tf2_geometry_msgs
- tf2_ros
- )
-
- if(EXISTS ${TF2_CPP_HEADERS})
- target_compile_definitions(turtle_tf2_message_filter PUBLIC -DTF2_CPP_HEADERS)
- endif()
最后再加上安装信息,使ros2 run命令能够根据路径找到可执行文件:
- install(TARGETS
- turtle_tf2_message_filter
- DESTINATION lib/${PROJECT_NAME})
执行依赖检查和最终构建:
$rosdep install -i --from-path src --rosdistro iron -y
$colcon build --packages-select learning_tf2_cpp
新开一个终端,进入工作空间根路径,source下环境(. install/setup.bash),首先启动几个节点(PointStamped消息的广播节点):
$ros2 launch learning_tf2_py turtle_tf2_sensor_message_launch.py
如果上述命令提示找不到turtle_tf2_sensor_message_launch.py文件(原因及解决方法见上文setup.py文件的修改,主要是未添加安装信息,如cmake中的install()一样)也可以直接进入launch路径执行,如下图所示。
启动完成后会有两只小海龟,turtle3在做圆周运动,turtle1静止不动,我们可以再开启一个终端执行如下命令控制turtle1:
$ros2 run turtlesim turtle_teleop_key
我们可以订阅查看下turtle3/turtle_point_stamped主题的消息:
$ros2 topic echo /turtle3/turtle_point_stamped
这些都完成之后,我们再运行下最后构建的消息过滤器/监听器节点:
$ros2 run learning_tf2_cpp turtle_tf2_message_filter
如果一切OK,我们会在终端看到下面的信息(turtle3在turtle1坐标系中的位姿数据):
本篇完。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。