赞
踩
2014年GAN发表,直到最近大火的AI生成全部有GAN的踪迹,快来简单实现它!!!
GAN通过计算图和博弈论的创新组合,他们表明,如果有足够的建模能力,相互竞争的两个模型将能够通过普通的旧反向传播进行共同训练。
这些模型扮演着两种不同的(字面意思是对抗的)角色。给定一些真实的数据集R,G是生成器,试图创建看起来像真实数据的假数据,而D是鉴别器,从真实集或G获取数据并标记差异。 G就像一造假机器,通过多次画画练习,使得画出来的话像真图一样。而D是试图区分的侦探团队。(除了在这种情况下,伪造者G永远看不到原始数据——只能看到D的判断。他们就像盲人摸象的探索伪造的人。
- #!/usr/bin/env python
-
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.optim as optim
- from torch.autograd import Variable
-
- matplotlib_is_available = True
- try:
- from matplotlib import pyplot as plt
- except ImportError:
- print("Will skip plotting; matplotlib is not available.")
- matplotlib_is_available = False
-
- # Data params
- data_mean = 4
- data_stddev = 1.25
-
- # ### Uncomment only one of these to define what data is actually sent to the Discriminator
- #(name, preprocess, d_input_func) = ("Raw data", lambda data: data, lambda x: x)
- #(name, preprocess, d_input_func) = ("Data and variances", lambda data: decorate_with_diffs(data, 2.0), lambda x: x * 2)
- #(name, preprocess, d_input_func) = ("Data and diffs", lambda data: decorate_with_diffs(data, 1.0), lambda x: x * 2)
- (name, preprocess, d_input_func) = ("Only 4 moments", lambda data: get_moments(data), lambda x: 4)
-
- print("Using data [%s]" % (name))
-
- # ##### DATA: Target data and generator input data
-
- def get_distribution_sampler(mu, sigma):
- return lambda n: torch.Tensor(np.random.normal(mu, sigma, (1, n))) # Gaussian
-
- def get_generator_input_sampler():
- return lambda m, n: torch.rand(m, n) # Uniform-dist data into generator, _NOT_ Gaussian
-
- # ##### MODELS: Generator model and discriminator model
-
- class Generator(nn.Module):
- def __init__(self, input_size, hidden_size, output_size, f):
- super(Generator, self).__init__()
- self.map1 = nn.Linear(input_size, hidden_size)
- self.map2 = nn.Linear(hidden_size, hidden_size)
- self.map3 = nn.Linear(hidden_size, output_size)
- self.f = f
-
- def forward(self, x):
- x = self.map1(x)
- x = self.f(x)
- x = self.map2(x)
- x = self.f(x)
- x = self.map3(x)
- return x
-
- class Discriminator(nn.Module):
- def __init__(self, input_size, hidden_size, output_size, f):
- super(Discriminator, self).__init__()
- self.map1 = nn.Linear(input_size, hidden_size)
- self.map2 = nn.Linear(hidden_size, hidden_size)
- self.map3 = nn.Linear(hidden_size, output_size)
- self.f = f
-
- def forward(self, x):
- x = self.f(self.map1(x))
- x = self.f(self.map2(x))
- return self.f(self.map3(x))
-
- def extract(v):
- return v.data.storage().tolist()
-
- def stats(d):
- return [np.mean(d), np.std(d)]
-
- def get_moments(d):
- # Return the first 4 moments of the data provided
- mean = torch.mean(d)
- diffs = d - mean
- var = torch.mean(torch.pow(diffs, 2.0))
- std = torch.pow(var, 0.5)
- zscores = diffs / std
- skews = torch.mean(torch.pow(zscores, 3.0))
- kurtoses = torch.mean(torch.pow(zscores, 4.0)) - 3.0 # excess kurtosis, should be 0 for Gaussian
- final = torch.cat((mean.reshape(1,), std.reshape(1,), skews.reshape(1,), kurtoses.reshape(1,)))
- return final
-
- def decorate_with_diffs(data, exponent, remove_raw_data=False):
- mean = torch.mean(data.data, 1, keepdim=True)
- mean_broadcast = torch.mul(torch.ones(data.size()), mean.tolist()[0][0])
- diffs = torch.pow(data - Variable(mean_broadcast), exponent)
- if remove_raw_data:
- return torch.cat([diffs], 1)
- else:
- return torch.cat([data, diffs], 1)
-
- def train():
- # Model parameters
- g_input_size = 1 # Random noise dimension coming into generator, per output vector
- g_hidden_size = 5 # Generator complexity
- g_output_size = 1 # Size of generated output vector
- d_input_size = 500 # Minibatch size - cardinality of distributions
- d_hidden_size = 10 # Discriminator complexity
- d_output_size = 1 # Single dimension for 'real' vs. 'fake' classification
- minibatch_size = d_input_size
-
- d_learning_rate = 1e-3
- g_learning_rate = 1e-3
- sgd_momentum = 0.9
-
- num_epochs = 5000
- print_interval = 100
- d_steps = 20
- g_steps = 20
-
- dfe, dre, ge = 0, 0, 0
- d_real_data, d_fake_data, g_fake_data = None, None, None
-
- discriminator_activation_function = torch.sigmoid
- generator_activation_function = torch.tanh
-
- d_sampler = get_distribution_sampler(data_mean, data_stddev)
- gi_sampler = get_generator_input_sampler()
- G = Generator(input_size=g_input_size,
- hidden_size=g_hidden_size,
- output_size=g_output_size,
- f=generator_activation_function)
- D = Discriminator(input_size=d_input_func(d_input_size),
- hidden_size=d_hidden_size,
- output_size=d_output_size,
- f=discriminator_activation_function)
- criterion = nn.BCELoss() # Binary cross entropy: http://pytorch.org/docs/nn.html#bceloss
- d_optimizer = optim.SGD(D.parameters(), lr=d_learning_rate, momentum=sgd_momentum)
- g_optimizer = optim.SGD(G.parameters(), lr=g_learning_rate, momentum=sgd_momentum)
-
- for epoch in range(num_epochs):
- for d_index in range(d_steps):
- # 1. Train D on real+fake
- D.zero_grad()
-
- # 1A: Train D on real
- d_real_data = Variable(d_sampler(d_input_size))
- d_real_decision = D(preprocess(d_real_data))
- d_real_error = criterion(d_real_decision, Variable(torch.ones([1]))) # ones = true
- d_real_error.backward() # compute/store gradients, but don't change params
-
- # 1B: Train D on fake
- d_gen_input = Variable(gi_sampler(minibatch_size, g_input_size))
- d_fake_data = G(d_gen_input).detach() # detach to avoid training G on these labels
- d_fake_decision = D(preprocess(d_fake_data.t()))
- d_fake_error = criterion(d_fake_decision, Variable(torch.zeros([1]))) # zeros = fake
- d_fake_error.backward()
- d_optimizer.step() # Only optimizes D's parameters; changes based on stored gradients from backward()
-
- dre, dfe = extract(d_real_error)[0], extract(d_fake_error)[0]
-
- for g_index in range(g_steps):
- # 2. Train G on D's response (but DO NOT train D on these labels)
- G.zero_grad()
-
- gen_input = Variable(gi_sampler(minibatch_size, g_input_size))
- g_fake_data = G(gen_input)
- dg_fake_decision = D(preprocess(g_fake_data.t()))
- g_error = criterion(dg_fake_decision, Variable(torch.ones([1]))) # Train G to pretend it's genuine
-
- g_error.backward()
- g_optimizer.step() # Only optimizes G's parameters
- ge = extract(g_error)[0]
-
- if epoch % print_interval == 0:
- print("Epoch %s: D (%s real_err, %s fake_err) G (%s err); Real Dist (%s), Fake Dist (%s) " %
- (epoch, dre, dfe, ge, stats(extract(d_real_data)), stats(extract(d_fake_data))))
-
- if matplotlib_is_available:
- print("Plotting the generated distribution...")
- values = extract(g_fake_data)
- print(" Values: %s" % (str(values)))
- plt.hist(values, bins=50)
- plt.xlabel('Value')
- plt.ylabel('Count')
- plt.title('Histogram of Generated Distribution')
- plt.grid(True)
- plt.show()
-
-
- train()
GAN从编程的角度来看(纯个人理解,不对可指正)
利用numpy的random方法,随机生成多维的噪音向量
创建一个G网络用来生成
创建一个D网络用来判断
俩个网络在训练时分别进行优化
先训练D网络去判断真假:如果训练D为真时,进行传播;如果训练D为假时,进行传播,投入优化器(1为真,0为假)
在D的基础上训练G。
*因为是随机生成,所以每次生成结果不同
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。