赞
踩
本博客的参考文章及相关资料下载 :
本节 基于 S3C 6410 开发板, 不同的开发板 以及 不同 的芯片 中断控制机制是不同的 ;
关闭中断步骤 :
程序状态字寄存器 :
CPRS 寄存器中断控制相关位 :
参考手册 : S3C6410X.pdf ( 基于 6410 开发板 )
中断使能寄存器 ( VICINTENABLE ) :
中断屏蔽寄存器 ( VICINTENCLEAR ) 简介 :
参考手册 : S3C6410X.pdf ( 基于 6410 开发板 )
CPRS 设置 值 分析 : 该寄存器需要考虑两个方面, ① 设置处理器的 SVC 工作模式, ② 关闭中断 ;
代码 逻辑 分析 : 之前 设置 处理器工作模式时 有涉及到 CPRS 寄存器设置, 在这里将关闭中断的操作也一并设置了;
set_svc :
, 在标号下定义一组汇编指令; mrs r0 cpsr
将 CPSR 寄存器中的值导出到 R0 寄存器中; bic r0, r0, #0x1f
, 将 R0 寄存器的值 与 #0x1f 进行 与操作, 即 后5 位都设置成0, 然后将 与 操作的结果保存到 R0 寄存器中 ; orr r0, r0, #0xd3
语句设置, 将 R0 寄存器中的值 与 0x13 进行 或操作, 将 或操作的结果 存放到 R0 寄存器中; msr cpsr, r0
, 将处理完的 CPSR 寄存器值 设置给 CPSR 寄存器;设置 中断屏蔽 寄存器 汇编代码分析 :
disable_interrupt :
, 然后 在 reset 处, 跳转到 该标号处执行 , bl disable_interrupt
; mvn r1, #0x0
, 将 0 按位取反 设置到 r1 通用寄存器中; MVN{条件}{S} <dest>, <op 1>
, 将 操作数 1 的值先按位取反, 在将值设置到 dest 寄存器中 ; ldr r0, =0x71200014
, ② 再将 全 1 的值设置到 寄存器中, 该寄存器的内存地址已经装载到了 R0 通用寄存器中, 代码 str r1,[r0]
; LDR{条件} Rd, <地址>
, 将内存中的数据装载到 寄存器 中, Rd 必须是通用寄存器, STR{条件} Rd, <地址>
, 将寄存器中的数据 装载 到内存中; 将 Rd 寄存器的内容 装载到地址中; ldr r0, =0x71200014
和 ldr r0, 0x71200014
, 前者是将 0x71200014 数值装载到寄存器中, 后者是将 0x71200014 地址中的内容装载到 r0 寄存器中 ; ldr r0, =0x71300014
, ② 再将 全 1 的值设置到 寄存器中, 该寄存器的内存地址已经装载到了 R0 通用寄存器中, 代码 str r1,[r0]
; LDR{条件} Rd, <地址>
, 将内存中的数据装载到 寄存器 中, Rd 必须是通用寄存器, STR{条件} Rd, <地址>
, 将寄存器中的数据 装载 到内存中; 将 Rd 寄存器的内容 装载到地址中; ldr r0, =0x71200014
和 ldr r0, 0x71200014
, 前者是将 0x71300014 数值装载到寄存器中, 后者是将 0x71300014 地址中的内容装载到 r0 寄存器中 ; 汇编代码示例 : Bootloader 流程 : ① 初始化异常向量表 , ② 设置 svc 模式 , ③ 关闭看门狗, ④ 关闭中断 ;
@****************************
@File:start.S
@
@BootLoader 初始化代码
@****************************
.text @ 宏 指明代码段
.global _start @ 伪指令声明全局开始符号
_start: @ 程序入口标志
b reset @ reset 复位异常
ldr pc, _undefined_instruction @ 未定义异常, 将 _undefined_instruction 值装载到 pc 指针中
ldr pc, _software_interrupt @ 软中断异常
ldr pc, _prefetch_abort @ 预取指令异常
ldr pc, _data_abort @ 数据读取异常
ldr pc, _not_used @ 占用 0x00000014 地址
ldr pc, _irq @ 普通中断异常
ldr pc, _fiq @ 软中断异常
_undefined_instruction: .word undefined_instruction @ _undefined_instruction 标号存放了一个值, 该值是 32 位地址 undefined_instruction, undefined_instruction 是一个地址
_software_interrupt: .word software_interrupt @ 软中断异常
_prefetch_abort: .word prefetch_abort @ 预取指令异常 处理
_data_abort: .word data_abort @ 数据读取异常
_not_used: .word not_used @ 空位处理
_irq: .word irq @ 普通中断处理
_fiq: .word fiq @ 快速中断处理
undefined_instruction: @ undefined_instruction 地址存放要执行的内容
nop
software_interrupt: @ software_interrupt 地址存放要执行的内容
nop
prefetch_abort: @ prefetch_abort 地址存放要执行的内容
nop
data_abort: @ data_abort 地址存放要执行的内容
nop
not_used: @ not_used 地址存放要执行的内容
nop
irq: @ irq 地址存放要执行的内容
nop
fiq: @ fiq 地址存放要执行的内容
nop
reset: @ reset 地址存放要执行的内容
bl set_svc @ 跳转到 set_svc 标号处执行
bl disable_watchdog @ 跳转到 disable_watchdog 标号执行, 关闭看门狗
bl disable_interrupt @ 跳转到 disable_interrupt 标号执行, 关闭中断
set_svc:
mrs r0, cpsr @ 将 CPSR 寄存器中的值 导出到 R0 寄存器中
bic r0, r0, #0x1f @ 将 R0 寄存器中的值 与 #0x1f 立即数 进行与操作, 并将结果保存到 R0 寄存器中, 实际是将寄存器的 0 ~ 4 位 置 0
orr r0, r0, #0xd3 @ 将 R0 寄存器中的值 与 #0xd3 立即数 进行或操作, 并将结果保存到 R0 寄存器中, 实际是设置 0 ~ 4 位 寄存器值 的处理器工作模式代码
msr cpsr, r0 @ 将 R0 寄存器中的值 保存到 CPSR 寄存器中
#define pWTCON 0x7e004000 @ 定义看门狗控制寄存器 地址 ( 6410开发板 )
disable_watchdog:
ldr r0, =pWTCON @ 先将控制寄存器地址保存到通用寄存器中
mov r1, #0x0 @ 准备一个 0 值, 看门狗控制寄存器都设置为0 , 即看门狗也关闭了
str r1, [r0] @ 将 0 值 设置到 看门狗控制寄存器中
disable_interrupt:
mvn r1,#0x0 @ 将 0x0 按位取反, 获取 全 1 的数据, 设置到 R1 寄存器中
ldr r0,=0x71200014 @ 设置第一个中断屏蔽寄存器, 先将 寄存器 地址装载到 通用寄存器 R0 中
str r1,[r0] @ 再将 全 1 的值设置到 寄存器中, 该寄存器的内存地址已经装载到了 R0 通用寄存器中
ldr r0,=0x71300014 @ 设置第二个中断屏蔽寄存器, 先将 寄存器 地址装载到 通用寄存器 R0 中
str r1,[r0] @ 再将 全 1 的值设置到 寄存器中, 该寄存器的内存地址已经装载到了 R0 通用寄存器中
gboot.lds 链接器脚本 代码解析 :
OUTPUT_ARCH(架构名称)
指明输出格式, 即处理器的架构, 这里是 arm 架构的, OUTPUT_ARCH(arm)
;ENTRY(入口位置)
, 在上面的 Start.S 中设置的程序入口是 _start
, 代码为 ENTRY(_start)
;.text :
设置代码段; .data :
设置数据段;.bss :
设置 BSS 段; bss_start = .;
;bss_end = .;
;. = ALIGN(4);
设置四字节对齐即可;OUTPUT_ARCH(arm) /*指明处理器结构*/
ENTRY(_start) /*指明程序入口 在 _start 标号处*/
SECTIONS {
. = 0x50008000; /*整个程序链接的起始位置, 根据开发板确定, 不同开发板地址不一致*/
. = ALIGN(4); /*对齐处理, 每段开始之前进行 4 字节对齐*/
.text : /*代码段*/
{
start.o (.text) /*start.S 转化来的代码段*/
*(.text) /*其它代码段*/
}
. = ALIGN(4); /*对齐处理, 每段开始之前进行 4 字节对齐*/
.data : /*数据段*/
{
*(.data)
}
. = ALIGN(4); /*对齐处理, 每段开始之前进行 4 字节对齐*/
bss_start = .; /*记录 bss 段起始位置*/
.bss : /*bss 段*/
{
*(.bss)
}
bss_end = .; /*记录 bss 段结束位置*/
}
makefile 文件编写 :
%.o : %.S
, 产生过程是 arm-linux-gcc -g -c $^
, 其中 ^
标识是所有的依赖文件, 在该规则下 start.S 会被变异成 start.o ; %.o : %.c
, 产生过程是 arm-linux-gcc -g -c $^
; all:
设置最终编译目标; all: start.o
表示最终目标需要依赖该文件; arm-linux-ld -Tgboot.lds -o gboot.elf $^
, 需要使用链接器脚本进行连接, ①链接工具是 arm-linux-ld 工具, ②使用 -Tgboot.lds
设置链接器脚本 是刚写的 gboot.lds 链接器脚本, ③输出文件是 gboot.elf 这是个中间文件, ④ 依赖文件是 $^
代表所有的依赖; arm-linux-objcopy -O binary gboot.elf gboot.bin
, 使用 -O binary
设置输出二进制文件, 依赖文件是 gboot.elf
, 输出的可执行二进制文件 即 结果是 gboot.bin
;all: start.o #依赖于 start.o
arm-linux-ld -Tgboot.lds -o gboot.elf $^ #使用链接器脚本, 将 start.o 转为 gboot.elf
arm-linux-objcopy -O binary gboot.elf gboot.bin #将 gboot.elf 转化为可以直接在板子上执行的 gboot.bin 文件
%.o : %.S #通用规则, 如 start.o 是由 start.S 编译来的, -c 是只编译不链接
arm-linux-gcc -g -c $^
%.o : %.c #通用规则, 如 start.o 是由 start.c 编译来的, -c 是只编译不链接
arm-linux-gcc -g -c $^
.PHONY: clean
clean: #清除编译信息
rm *.o *.elf *.bin
编译过程 :
make
; 本博客的参考文章及相关资料下载 :
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。