当前位置:   article > 正文

实验5 Spark SQL编程初级实践

用filter筛选age>20的记录

1.Spark SQL基本操作

将下列 json 数据复制到你的 ubuntu 系统/usr/local/spark 下,并保存命名为 employee.json

答案:

scala> import org.apache.spark.sql.SparkSession scala> val spark=SparkSession.builder().getOrCreate() scala> import spark.implicits._ scala> val df = spark.read.json("file:///usr/local/spark/employee.json") 

(1)查询 DataFrame 的所有数据 :scala> df.show() 

(2)查询所有数据,并去除重复的数据 :scala> df.distinct().show() 

(3)查询所有数据,打印时去除 id 字段 :scala> df.drop("id").show() 

(4)筛选 age>20 的记录:scala> df.filter(df("age") > 30 ).show() 

(5)将数据按 name 分组 :scala> df.groupBy("name").count().show() 

(6)将数据按 name 升序排列 :scala> df.sort(df("name").asc).show() 

(7)取出前 3 行数据 :scala> df.take(3) 或 scala> df.head(3) 

(8)查询所有记录的 name 列,并为其取别名为 username :scala> df.select(df("name").as("username")).show() 

(9)查询年龄 age 的平均值 :scala> df.agg("age"->"avg") 

(10)查询年龄 age 的最小值 :scala> df.agg("age"->"min") 

2.编程实现将RDD转换成DataFrame

答案:假设当前目录为/usr/local/spark/mycode/rddtodf,在当前目录下新建一个目录 mkdir -p src/main/scala ,然后在目录/usr/local/spark/mycode/rddtodf/src/main/scala 下 新 建 一 个 rddtodf.scala,复制下面代码

import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder 
import org.apache.spark.sql.Encoder 
import spark.implicits._ object RDDtoDF {    
         def main(args: Array[String]) { 
             case class Employee(id:Long,name: String, age: Long) 
val employeeDF =
spark.sparkContext.textFile("file:///usr/local/spark/employee.txt").map(_.split(",")).map(at tributes => Employee(attributes(0).trim.toInt,attributes(1), attributes(2).trim.toInt)).toDF()
employeeDF.createOrReplaceTempView("employee")
val employeeRDD = spark.sql("select id,name,age from employee") employeeRDD.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show() } }

在目录/usr/local/spark/mycode/rddtodf 目录下新建 simple.sbt,复制下面代码:

name := "Simple Project" 
version := "1.0"
scalaVersion := "2.11.8" 
libraryDependencies += "org.apache.spark" % "spark-core" % "2.1.0" 

在目录/usr/local/spark/mycode/rddtodf 下执行下面命令打包程序 :/usr/local/sbt/sbt package

最后在目录/usr/local/spark/mycode/rddtodf 下执行下面命令提交程序 :/usr/local/spark/bin/spark-submit --class " RDDtoDF "  /usr/local/spark/mycode/rddtodf/target/scala-2.11/simple-project_2.11-1.0.jar 

3.编程实现利用DataFrame读写mysql数据库

答案:

(1)mysql> create database sparktest; 

mysql> use sparktest;

mysql> create table employee (id int(4), name char(20), gender char(4), age int(4));

mysql> insert into employee values(1,'Alice','F',22);

mysql> insert into employee values(2,'John','M',25); 

(2)假设当前目录为/usr/local/spark/mycode/testmysql,在当前目录下新建一个目录 mkdir -p src/main/scala , 然 后 在 目 录 /usr/local/spark/mycode/testmysql/src/main/scala 下 新 建 一 个 testmysql.scala,复制下面代码;

import java.util.Properties 
import org.apache.spark.sql.types._ 
import org.apache.spark.sql.Row 
object TestMySQL {     
        def main(args: Array[String]) { 
             val employeeRDD = spark.sparkContext.parallelize(Array("3 Mary F 26","4 Tom M 23")).map(_.split(" "))
        val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true)))
        val rowRDD = employeeRDD.map(p => Row(p(0).toInt,p(1).trim, p(2).trim,p(3).toInt)) 
        val employeeDF = spark.createDataFrame(rowRDD, schema) val prop = new Properties() 
        prop.put("user", "root")  
        prop.put("password", "hadoop")                  prop.put("driver","com.mysql.jdbc.Driver")    
 employeeDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/sparktest", sparktest.employee", prop) 
       val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/sparktest").option("driver","com.mysql.jdbc.Driver").optio n("dbtable","employee").option("user","root").option("password", "hadoop").load() jdbcDF.agg("age" -> "max", "age" -> "sum")    
     } 
 } 

在目录/usr/local/spark/mycode/testmysql 目录下新建 simple.sbt,复制下面代码: 

name := "Simple Project" 
version := "1.0" 
scalaVersion := "2.11.8" 
libraryDependencies += "org.apache.spark" % "spark-core" % "2.1.0" 

在目录/usr/local/spark/mycode/testmysql 下执行下面命令打包程序 :/usr/local/sbt/sbt package 

最后在目录/usr/local/spark/mycode/testmysql 下执行下面命令提交程序 :

/usr/local/spark/bin/spark-submit --class " TestMySQL " /usr/local/spark/mycode/testmysql/target/scala-2.11/simple-project_2.11-1.0.jar 

转载于:https://www.cnblogs.com/lijing925/p/10603016.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/589200
推荐阅读
相关标签
  

闽ICP备14008679号