赞
踩
N:大整数N,我们称之为模数(modulus)
p 和 q :大整数N的两个因子(factor)
e 和 d:互为模反数的两个指数(exponent)
c 和 m:分别是密文和明文
{N,e}称为公钥,{N,d}称为私钥
加密过程:
c=m^e mod n
c=pow(m,e,n)
解密过程:
m=c^d mod n
m=pow(c,d,n)
求解私钥d:
d = gmpy2.invert(e, (p-1)*(q-1))
一般来说,n,e是公开的,但是由于n一般是两个大素数的乘积,所以我们很难求解出d,所以RSA加密就是利用现代无法快速实现大素数的分解,所存在的一种安全的非对称加密
应用流程
n = p * q
。phi = (p-1) * (q-1)
。1<e<phi
且 gcd(e , phi) == 1
。(e * d)% phi ==1
。c = (m ^ e) % n
, m = (c ^ d) % n
。其中m为明文,c为密文,(n,e)为公钥对,d为私钥,要求 0 <= m < n
安装
安装之前必须先安装这四个库(PyCrypto,GMPY2,SymPy,requests)
git clone https://github.com/Ganapati/RsaCtfTool.git
cd RsaCtfTool //进入这个目录
安装python第三方库
pip install -r requirements.txt
用法一:已知公钥(自动求私钥) –publickey,密文 —-uncipherfile。
将文件解压复制到RsaCtfTool里
python RsaCtfTool.py --publickey 公钥文件 --uncipherfile 加密的文件
用法二:已知公钥求私钥
python RsaCtfTool.py --publickey 公钥文件 --private
用法三:密钥格式转换——把PEM格式的公钥转换为n,e
python RsaCtfTool.py --dumpkey --key 公钥文件
用法四:密钥格式转换——把n,e转换为PEM格式
python RsaCtfTool.py --createpub -n 782837482376192871287312987398172312837182 -e 65537
安装:
git clone https://github.com/ius/rsatool.git
cd rsatool //进入这个目录
python setup.py install
提供模数和私有指数,PEM输出到key.pem:
python rsatool.py -f PEM -o key.pem -n 13826123222358393307 -d 9793706120266356337
提供两个素数,DER输出到key.der:
python rsatool.py -f DER -o key.der -p 4184799299 -q 3303891593
项目地址:https://github.com/ius/rsatool
1. 生成PKCS#1私钥
openssl genrsa -out rsa_prikey.pem 1024
-out 指定生成文件,此文件包含公钥和私钥两部分,所以即可以加密,也可以解密
1024 生成密钥的长度(生成私钥为PKCS#1)
2.把RSA私钥转换成PKCS8格式
openssl pkcs8 -topk8 -inform PEM -in rsa_prikey.pem -outform PEM -nocrypt -out prikey.pem
3. 根据私钥生成公钥
openssl rsa -in rsa_prikey.pem -pubout -out pubkey.pem
-in 指定输入的密钥文件
-out 指定提取生成公钥的文件(PEM公钥格式)
4. 提取PEM RSAPublicKey格式公钥
openssl rsa -in key.pem -RSAPublicKey_out -out pubkey.pem
-in 指定输入的密钥文件
-out 指定提取生成公钥的文件(PEM RSAPublicKey格式)
5. 公钥加密文件
openssl rsautl -encrypt -in input.file -inkey pubkey.pem -pubin -out output.file
-in 指定被加密的文件
-inkey 指定加密公钥文件
-pubin 表面是用纯公钥文件加密
-out 指定加密后的文件
6. 私钥解密文件
openssl rsautl -decrypt -in input.file -inkey key.pem -out output.file
-in 指定需要解密的文件
-inkey 指定私钥文件
-out 指定解密后的文件
ras 的用法如下:
openssl rsa [-inform PEM|NET|DER] [-outform PEM|NET|DER] [-in filename] [-passin arg] [-out filename] [-passout arg]
[-sgckey] [-des] [-des3] [-idea] [-text] [-noout] [-modulus] [-check] [-pubin] [-pubout] [-engine id]</pre>
常用选项:
-in filename:指明私钥文件
-out filename:指明将提取出的公钥保存至指定文件中
-pubin:根据公钥提取出私钥
-pubout:根据私钥提取出公钥
下载地址:https://mirrors.tuna.tsinghua.edu.cn/sagemath/linux/64bit/index.html
安装
tar xvf sage-8.0-Ubuntu_16.04-x86_64.tar.bz2
cd SageMath
from Crypto.Util.number import * import gmpy2 msg = 'flag is :testflag' hex_msg=int(msg.encode("hex"),16) print(hex_msg) p=getPrime(100) q=getPrime(100) n=p*q e=0x10001 phi=(p-1)*(q-1) d=gmpy2.invert(e,phi) print("d=",hex(d)) c=pow(hex_msg,e,n) print("e=",hex(e)) print("n=",hex(n)) print("c=",hex(c))
以下部分感谢 jerry 师傅整理:http://panaceasec.cn/
#!/usr/bin/env python # -*- coding:utf-8 -*- import binascii import gmpy2 n=0x80b32f2ce68da974f25310a23144977d76732fa78fa29fdcbf #这边我用yafu分解了n p=780900790334269659443297956843 q=1034526559407993507734818408829 e=0x10001 c=0x534280240c65bb1104ce3000bc8181363806e7173418d15762 phi=(p-1)*(q-1) d=gmpy2.invert(e,phi) m=pow(c,d,n) print(hex(m)) print(binascii.unhexlify(hex(m)[2:].strip("L")))
有n、e、c
import gmpy2
import libnum
n= 79059977083433369161977159472257563109008119475755288439774758824887836857424336032518651862088590700241980200158542855762122262156445632897757444422514158062996501037323379
e= 65537
c= 31573591986915001857640263466939164206307247748465148395978810720215094970707002043721991055789084518831540652652824225863275289979959264564070907438540016782921324316795681
p1 = 2514358789
q=10728308687033142242263042720863820844383961098139391476856378846439202568058060175330323889963293720874263174254928466703829537388987357384056877938482683
p2 = 2930880917
d = gmpy2.invert(e,(p1-1)*(q-1)*(p2-1))
# print(d)
m = pow(c,d,n)
print(libnum.n2s(m))
因为n=p*q
其中若p和q的值相差较小,或者较大,都会造成n更容易分解的结果
例如出题如下
p=getPrime(512)
q=gmpy2.next_prime(p)
n=p*q
因为p和q十分接近,所以可以使用yafu直接分解
使用
factor(*)
括号中为要分解的数
http://factordb.com/
通过在此类网站上查询n,如果可以分解或者之前分解成功过,那么可以直接得到p和q
当题目给的多对公钥n是公用了一个素数因子的时候,可以尝试公约数分解
出题一般如下
p1=getPrime(512)
p2=getPrime(512)
q=getPrime(512)
n1=p1*q
n2=p2*q
所以当题目给了多个n,并且发现n无法分解,可以尝试是否有公约数。
求公约数可以使用欧几里得辗转相除法,实现python脚本如下
def gcd(a, b): #求最大公约数
if a < b:
a, b = b, a
while b != 0:
temp = a % b
a = b
b = temp
return a
def gcd(a, b): #求最大公约数
if a < b:
a, b = b, a
while b != 0:
temp = a % b
a = b
b = temp
return a
n1=0x6c9fb4bf11344e4c818be178e3d3db352797099f929e4ba8fa86d9c4ce3d8f71e3daa8c795b67dc2dabe1e1608836904386c364ecec759c27eaa83eb93710003d4cc848e558f7b11372405c5787b60eca627372767455a5fcf30cb6c157ca5a6267d63ffa16fe49e7433136a47945de2219f46a35f2b6a58196057c602e72a0b
n2=0x46733cc071bdee0d178fb32836a6b0a2f145a681df47d31ea9d9fc5b5fa0cc7ddbcd34531aefeace9840fc890f7a111f73593c9a41886b9a6f91cde3e6f9c71821a8ad877de51f78094599209746e80635c5625459ad7ba14f926b74875c8980a9436d6bbd54e1d9da72ae200383516098c04e24f58b23b4a8142cef0c931a55
print(gcd(n1,n2))
使用欧几里得辗转相除得到共有的因子,然后n1和n2除以这个因子,即可得到另一个素数因子。
已知e,d,n求p,q
例如
('d=', '0x455e1c421b78f536ec24e4a797b5be78df09d8d9e3b7f4e2244138a7583e810adf6ad056bb59a91300c9ead5ed77ea6bafdebf7ab2d9ec200127901083c7ffca45e83f2c934358366a2b6207b96a0eae6df0476060c063c281512834a42350a3b56bc09f5cec1a6975257d7f12a58f6389060e49b41f05e88ea2b30b395f6391')
('e=', '0x10001')
('n=', '0x71ee0f4883690893ab503e97e25e6308d4c1e0a050cbea7b9c040f7a5b5b484afcecc8a9b3cc6bf089a1e83281562df217caab7220e3dfc14399139ce437af2f131f9345675e4d848cfab5827818eeab7834374be4a0513f81f3df125a932c2bb4c24c834d798bcc80f9c4a8770b01f8e54620b72a4f0491edd391e635d48e71L')
私钥d的获取是通过
d = gmpy2.invert(e, (p-1)*(q-1))
分解p,q python实现如下
import random def gcd(a, b): if a < b: a, b = b, a while b != 0: temp = a % b a = b b = temp return a def getpq(n,e,d): p = 1 q = 1 while p==1 and q==1: k = d * e - 1 g = random.randint ( 0 , n ) while p==1 and q==1 and k % 2 == 0: k /= 2 y = pow(g,k,n) if y!=1 and gcd(y-1,n)>1: p = gcd(y-1,n) q = n/p return p,q
import random def gcd(a, b): if a < b: a, b = b, a while b != 0: temp = a % b a = b b = temp return a def getpq(n,e,d): p = 1 q = 1 while p==1 and q==1: k = d * e - 1 g = random.randint ( 0 , n ) while p==1 and q==1 and k % 2 == 0: k /= 2 y = pow(g,k,n) if y!=1 and gcd(y-1,n)>1: p = gcd(y-1,n) q = n/p return p,q n=0x71ee0f4883690893ab503e97e25e6308d4c1e0a050cbea7b9c040f7a5b5b484afcecc8a9b3cc6bf089a1e83281562df217caab7220e3dfc14399139ce437af2f131f9345675e4d848cfab5827818eeab7834374be4a0513f81f3df125a932c2bb4c24c834d798bcc80f9c4a8770b01f8e54620b72a4f0491edd391e635d48e71 e=0x10001 d=0x455e1c421b78f536ec24e4a797b5be78df09d8d9e3b7f4e2244138a7583e810adf6ad056bb59a91300c9ead5ed77ea6bafdebf7ab2d9ec200127901083c7ffca45e83f2c934358366a2b6207b96a0eae6df0476060c063c281512834a42350a3b56bc09f5cec1a6975257d7f12a58f6389060e49b41f05e88ea2b30b395f6391 p,q=getpq(n,e,d) print("p=",p) print("q=",q) print(p*q==n)
首先了解一下什么是dp、dq
dp=d%(p-1)
dq=d%(q-1)
这种参数是为了让解密的时候更快速产生的
假设题目仅给出p,q,dp,dq,c,即不给公钥e
('p=', '0xf85d730bbf09033a75379e58a8465f8048b8516f8105ce2879ce774241305b6eb4ea506b61eb7e376d4fcd425c76e80cb748ebfaf3a852b5cf3119f028cc5971L')
('q=', '0xc1f34b4f826f91c5d68c5751c9af830bc770467a68699991be6e847c29c13170110ccd5e855710950abab2694b6ac730141152758acbeca0c5a51889cbe84d57L')
('dp=', '0xf7b885a246a59fa1b3fe88a2971cb1ee8b19c4a7f9c1a791b9845471320220803854a967a1a03820e297c0fc1aabc2e1c40228d50228766ebebc93c97577f511')
('dq=', '0x865fe807b8595067ff93d053cc269be6a75134a34e800b741cba39744501a31cffd31cdea6078267a0bd652aeaa39a49c73d9121fafdfa7e1131a764a12fdb95')
('c=', '0xae05e0c34e2ba4ca3536987cc2cfc3f1f7f53190164d0ac50b44832f0e7224c6fdeebd2c91e3991e7d179c26b1b997295dc9724925ba431f527fba212703a0d14a34ce133661ae0b6001ee326303d6ccdc27dbd94e0987fae25a84f197c1535bdac9094bfb3846b7ca696b2e5082bea7bff804da275772ca05dd51b185a4fc30L')
解密代码如下
InvQ=gmpy2.invert(q,p)
mp=pow(c,dp,p)
mq=pow(c,dq,q)
m=(((mp-mq)*InvQ)%p)*q+mq
print '{:x}'.format(m).decode('hex')
import gmpy2
import binascii
def decrypt(dp,dq,p,q,c):
InvQ = gmpy2.invert(q,p)
mp = pow(c,dp,p)
mq = pow(c,dq,q)
m=(((mp-mq)*InvQ)%p)*q+mq
print (binascii.unhexlify(hex(m)[2:]))
p=0xf85d730bbf09033a75379e58a8465f8048b8516f8105ce2879ce774241305b6eb4ea506b61eb7e376d4fcd425c76e80cb748ebfaf3a852b5cf3119f028cc5971
q=0xc1f34b4f826f91c5d68c5751c9af830bc770467a68699991be6e847c29c13170110ccd5e855710950abab2694b6ac730141152758acbeca0c5a51889cbe84d57
dp=0xf7b885a246a59fa1b3fe88a2971cb1ee8b19c4a7f9c1a791b9845471320220803854a967a1a03820e297c0fc1aabc2e1c40228d50228766ebebc93c97577f511
dq=0x865fe807b8595067ff93d053cc269be6a75134a34e800b741cba39744501a31cffd31cdea6078267a0bd652aeaa39a49c73d9121fafdfa7e1131a764a12fdb95
c=0xae05e0c34e2ba4ca3536987cc2cfc3f1f7f53190164d0ac50b44832f0e7224c6fdeebd2c91e3991e7d179c26b1b997295dc9724925ba431f527fba212703a0d14a34ce133661ae0b6001ee326303d6ccdc27dbd94e0987fae25a84f197c1535bdac9094bfb3846b7ca696b2e5082bea7bff804da275772ca05dd51b185a4fc30
decrypt(dp,dq,p,q,c)
假设题目给出公钥n,e以及dp
('dp=', '0x7f1344a0b8d2858492aaf88d692b32c23ef0d2745595bc5fe68de384b61c03e8fd054232f2986f8b279a0105b7bee85f74378c7f5f35c3fd505e214c0738e1d9')
('n=', '0x5eee1b4b4f17912274b7427d8dc0c274dc96baa72e43da36ff39d452ff6f2ef0dc6bf7eb9bdab899a6bb718c070687feff517fcf5377435c56c248ad88caddad6a9cefa0ca9182daffcc6e48451d481f37e6520be384bedb221465ec7c95e2434bf76568ef81e988039829a2db43572e2fe57e5be0dc5d94d45361e96e14bd65L')
('e=', '0x10001')
('c=', '0x510fd8c3f6e21dfc0764a352a2c7ff1e604e1681a3867480a070a480f722e2f4a63ca3d7a92b862955ab4be76cde43b51576a128fba49348af7a6e34b335cfdbda8e882925b20503762edf530d6cd765bfa951886e192b1e9aeed61c0ce50d55d11e343c78bb617d8a0adb7b4cf3b913ee85437191f1136e35b94078e68bee8dL')
给出密文要求解明文
我们可以通过n,e,dp求解私钥d
公式推导参考简书
https://www.jianshu.com/p/74270dc7a14b
首先dp是
dp=d%(p-1)
以下推导过程如果有问题欢迎指正
现在我们可以知道的是
c≡m^e mod n
m≡c^d mod n
ϕ(n)=(p−1)∗(q−1)
d∗e≡1 mod ϕ(n)
dp≡d mod (p−1)
由上式可以得到
dp∗e≡d∗e mod (p−1)
因此可以得到
d∗e=k∗(p−1)+dp∗ed∗e≡1 mod ϕ(n)
我们将式1带入式2可以得到
k∗(p−1)+dp∗e≡1 mod (p−1)∗(q−1)
故此可以得到
k2∗(p−1)∗(q−1)+1=k1∗(p−1)+dp∗e
变换一下
(p−1)∗[k2∗(q−1)−k1]+1=dp∗e
因为
dp<p−1
可以得到
e>k2∗(q−1)−k1
我们假设
x=k2∗(q−1)−k1
可以得到x的范围为
(0,e)
因此有
x∗(p−1)+1=dp∗e
那么我们可以遍历
x∈(0,e)
求出p-1,求的方法也很简单,遍历65537种可能,其中肯定有一个p可以被n整除那么求出p和q,即可利用
ϕ(n)=(p−1)∗(q−1)d∗e≡1 mod ϕ(n)
推出
d≡1∗e−1 mod ϕ(n)
注:这里的-1为逆元,不是倒数的那个-1
求解私钥d脚本如下
def getd(n,e,dp):
for i in range(1,e):
if (dp*e-1)%i == 0:
if n%(((dp*e-1)/i)+1)==0:
p=((dp*e-1)/i)+1
q=n/(((dp*e-1)/i)+1)
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)%phi
return d
import gmpy2 import binascii def getd(n,e,dp): for i in range(1,e): if (dp*e-1)%i == 0: if n%(((dp*e-1)/i)+1)==0: p=((dp*e-1)/i)+1 q=n/(((dp*e-1)/i)+1) phi = (p-1)*(q-1) d = gmpy2.invert(e,phi)%phi return d dp=0x7f1344a0b8d2858492aaf88d692b32c23ef0d2745595bc5fe68de384b61c03e8fd054232f2986f8b279a0105b7bee85f74378c7f5f35c3fd505e214c0738e1d9 n=0x5eee1b4b4f17912274b7427d8dc0c274dc96baa72e43da36ff39d452ff6f2ef0dc6bf7eb9bdab899a6bb718c070687feff517fcf5377435c56c248ad88caddad6a9cefa0ca9182daffcc6e48451d481f37e6520be384bedb221465ec7c95e2434bf76568ef81e988039829a2db43572e2fe57e5be0dc5d94d45361e96e14bd65 e=0x10001 c=0x510fd8c3f6e21dfc0764a352a2c7ff1e604e1681a3867480a070a480f722e2f4a63ca3d7a92b862955ab4be76cde43b51576a128fba49348af7a6e34b335cfdbda8e882925b20503762edf530d6cd765bfa951886e192b1e9aeed61c0ce50d55d11e343c78bb617d8a0adb7b4cf3b913ee85437191f1136e35b94078e68bee8d d=getd(n,e,dp) m=pow(c,d,n) print (binascii.unhexlify(hex(m)[2:]))
#!/usr/bin/env python # -*- coding:utf-8 -*- import gmpy2 from Crypto.Util.number import * # 当e约去公约数后与phi互素 def decrypt(p, q, e, c): n = p * q phi = (p - 1) * (q - 1) t = gmpy2.gcd(e, phi) d = gmpy2.invert(e // t, phi) m = pow(c, d, n) msg = gmpy2.iroot(m, t) if msg[1]: print(long_to_bytes(msg[0])) p= 135406272915839663948982508259168339196413423033707377351582717408135201161291947411690398070725136534418000750068523816458786100037135542069749803825803176245899663700018918204457909082934286787984577920819722071614325832117549949176386055577917668392717683643933279741971553133044965672217515958006018425207 q= 141499967777554698157827398588073190546048161142442371043319091793202159392937117317909316830021492737369017974252412948824878182004132437165872836769442232191985031274210566004860441962404283572352416239402475111512429494403506484997417885317393735452834730615296387016523054424102807140640940320044291046001 e= 894 c= 285599740642531890154220175592437844999990780403815630307661459001713176317615138628516144325413153232796819897801881107425865913054728954677352027457699314702416360013205027660502210085125607181176890689285963882325311472422689397465349673391413548284592577544566069076266866047930427530566329183924506279416975701558074448835820462125272973167295304050434568652119366359340574659484793805164709585039574539722702352716480226900050322661650017379886614397585534285036799547237613356555628012895080401615470840003601931382810917605930301582006344272146554650976008053460139711071700513559719126632374724028665834623 decrypt(p,q,e,c)
假设题目给出两组公钥n,e以及第一组、第二组加密后的密文
('n1=', '0xbf510b8e2b169fbce366eb15a4f6c71b370f02f2108c7feb482234a386185bce1a740fa6498e04edbdf2a639e320619d9f39d3e740ebaf578af0426bc3e851001a1d599108a08725347f6680a7f5581a32d91505023701872c3df723e8de9f201d3b17059bebff944b915045870d757eb6d6d009eb4561cc7e4b89968e4433a9L')
('e1=', '0x15d6439c6')
('c1=', '0x43e5cc4c99c3040aef2ccb0d4c45266f6b75cd7f9f1be105766689283f0886061c9cd52ac2b2b6c1b7d250c2079f354ca9b988db5556336201f3b5e489916b3b60b80c34bef8f608d7471fafaf14bee421b60630f42c5cc813356e786ff10e5efa334b8a73b7ea06afa6043f33be6a31010d306ba60516243add65c183da843aL')
('n2=', '0xba85d38d1bfc3fb281927c9246b5b771ac3344ca9fe1c2d9c793a886bffb5c84558f4a578cd5ba9e777a4e08f66d0cabe05b9aa2ae8d075778b5fbfff318a7f9b6f22e2eff6f79d8c1148941b3974f3e83a4a4f1520ad42336eddc572ec7ea04766eb798b2f1b1b52009b3eeea7741b2c55e3c7c11c5cf6a4e204c6b0d312f49L')
('e2=', '0x2c09848c6')
('c2=', '0x79ec6350649377f69b475eca83a7d9d5356a1d62e29933e9c8e2b19b4b23626a581037aba3be6d7f73d5bed049350e41c1ed4cdc3e10ee34ec576ef3449be2f7d930c759612e1c23c4db71d0e5185a80b548031e3857dd93eca4af017fcd25895fcc4e8a2b36c1dd36b8cd9cc9200e2879f025928fe346e2cfae5200e66de6ccL')
首先用公约数分解可以分解得到n1、n2的因子
但是发现e和φ(n)是不互为素数的,所以我们无法求出私钥d。
gcd(e1,(p-1)*(q1-1))
gcd(e2,(p-1)*(q2-1))
得到结果为79858
也就是说,e和φ(n)不互素且具有公约数79858
1、首先我们发现n1、n2可以用公约数分解出p、q
但是由于e与φ(n)不互素,所以我们无法求解得到私钥d
只有当他们互素时,才能保证e的逆元d唯一存在。
公式推导过程参考博客
https://blog.csdn.net/chenzzhenguo/article/details/94339659
2、下面进行等式运算,来找到解题思路
还是要求逆元,则要找到与φ(n)互素的数
我们已知b=79858
从上面的推算,可得a与φ(n)互素,于是可唯一确定bd
于是求出bd
gmpy2.invert(a,φ(n))
然后想到bd/b,求出d,然后求明文。可是,经测试求出的是乱码,这个d不是我们想要的
3、想一下,给两组数据,应该有两组数据的作用,据上面的结论,我们可以得到一个同余式组
进一步推导
可以计算出特解m
m=solve_crt([m1,m2,m3], [q1,q2,p])
我们想到模n1,n2不行那模q1*q2呢,
这里res可取特值m
那么问题就转化为求一个新的rsa题目
e=79858,经计算发现此时e与φ(n)=(q1-1)(q2-1),还是有公因数2。
那么,我们参照上述思路,可得出m^2,此时直接对m开方即可。
#!/usr/bin/env python # -*- coding:utf-8 -*- import gmpy2 import binascii def gcd(a, b): if a < b: a, b = b, a while b != 0: temp = a % b a = b b = temp return a n1=0xbf510b8e2b169fbce366eb15a4f6c71b370f02f2108c7feb482234a386185bce1a740fa6498e04edbdf2a639e320619d9f39d3e740ebaf578af0426bc3e851001a1d599108a08725347f6680a7f5581a32d91505023701872c3df723e8de9f201d3b17059bebff944b915045870d757eb6d6d009eb4561cc7e4b89968e4433a9 n2=0xba85d38d1bfc3fb281927c9246b5b771ac3344ca9fe1c2d9c793a886bffb5c84558f4a578cd5ba9e777a4e08f66d0cabe05b9aa2ae8d075778b5fbfff318a7f9b6f22e2eff6f79d8c1148941b3974f3e83a4a4f1520ad42336eddc572ec7ea04766eb798b2f1b1b52009b3eeea7741b2c55e3c7c11c5cf6a4e204c6b0d312f49 p=gcd(n1,n2) q1=n1//p q2=n2//p c1=0x43e5cc4c99c3040aef2ccb0d4c45266f6b75cd7f9f1be105766689283f0886061c9cd52ac2b2b6c1b7d250c2079f354ca9b988db5556336201f3b5e489916b3b60b80c34bef8f608d7471fafaf14bee421b60630f42c5cc813356e786ff10e5efa334b8a73b7ea06afa6043f33be6a31010d306ba60516243add65c183da843a c2=0x79ec6350649377f69b475eca83a7d9d5356a1d62e29933e9c8e2b19b4b23626a581037aba3be6d7f73d5bed049350e41c1ed4cdc3e10ee34ec576ef3449be2f7d930c759612e1c23c4db71d0e5185a80b548031e3857dd93eca4af017fcd25895fcc4e8a2b36c1dd36b8cd9cc9200e2879f025928fe346e2cfae5200e66de6cc e1 =0x15d6439c6 e2 =0x2c09848c6 #print(gcd(e1,(p-1)*(q1-1))) #print(gcd(e2,(p-1)*(q2-1))) e1=e1//gcd(e1,(p-1)*(q1-1)) e2=e2//gcd(e2,(p-1)*(q2-1)) phi1=(p-1)*(q1-1);phi2=(p-1)*(q2-1) d1=gmpy2.invert(e1,phi1) d2=gmpy2.invert(e2,phi2) f1=pow(c1,d1,n1) f2=pow(c2,d2,n2) def GCRT(mi, ai): curm, cura = mi[0], ai[0] for (m, a) in zip(mi[1:], ai[1:]): d = gmpy2.gcd(curm, m) c = a - cura K = c // d * gmpy2.invert(curm // d, m // d) cura += curm * K curm = curm * m // d cura %= curm return (cura % curm, curm) f3,lcm = GCRT([n1,n2],[f1,f2]) n3=q1*q2 c3=f3%n3 phi3=(q1-1)*(q2-1) d3=gmpy2.invert(39929,phi3)#39929是79858//gcd((q1-1)*(q2-1),79858) 因为新的e和φ(n)还是有公因数2 m3=pow(c3,d3,n3) if gmpy2.iroot(m3,2)[1] == 1: flag=gmpy2.iroot(m3,2)[0] print(binascii.unhexlify(hex(flag)[2:].strip("L")))
题目如下
('n=', '0xf1b234e8a03408df4868015d654dcb931f038ef4fc0be8658c9b951ee6c60d23689a1bfb151e74df0910fa1cf8a542282a65')
('e=', '0x10001')
('c=', '0x22fda6137013bac19754f78e8d9658498017f05a4b0814f2af97dc2c60fdc433d2949ea27b13337961ef3c4cf27452ad3c95')
因为这题的公钥n是由四个素数相乘得来的,
其中四个素数的值相差较小,或者较大,都会造成n更容易分解的结果
例如出题如下
p=getPrime(100)
q=gmpy2.next_prime(p)
r=gmpy2.next_prime(q)
s=gmpy2.next_prime(r)
n=p*q*r*s
因为p、q、r、s十分接近,所以可以使用yafu直接分解
使用
factor(*)
括号中为要分解的数
import binascii
import gmpy2
p=14qBrMavy2pW9umzuhd7eMDVpwQ62xRtPK
q=14qBrMavy2pW9umzuhd7eMDVpwQ62xRtPK
r=14qBrMavy2pW9umzuhd7eMDVpwQ62xRtPK
s=14qBrMavy2pW9umzuhd7eMDVpwQ62xRtPK
e=0x10001
c=0x22fda6137013bac19754f78e8d9658498017f05a4b0814f2af97dc2c60fdc433d2949ea27b13337961ef3c4cf27452ad3c95
n=p*q*r*s
phi=(p-1)*(q-1)*(r-1)*(s-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(binascii.unhexlify(hex(m)[2:].strip("L")))
小明文攻击是基于低加密指数的,主要分成两种情况。
('n=', '0xad03794ef170d81aad370dccb7b92af7d174c10e0ae9ddc99b7dc5f93af6c65b51cc9c40941b002c7633caf8cd50e1b73aa942c8488d46c0032064306de388151814982b6d35b4e2a62dd647f527b31b4f826c36848dc52999574a8694460e1b59b4e96bda1341d3ba5f991f0000a56004d47681ecfd37a5e64bd198617f8dadL')
('e=', '0x3')
('c=', '0x10652cdf6f422470ea251f77L')
这种情况直接对密文e次开方,即可得到明文
解题脚本
import binascii
import gmpy2
n=0xad03794ef170d81aad370dccb7b92af7d174c10e0ae9ddc99b7dc5f93af6c65b51cc9c40941b002c7633caf8cd50e1b73aa942c8488d46c0032064306de388151814982b6d35b4e2a62dd647f527b31b4f826c36848dc52999574a8694460e1b59b4e96bda1341d3ba5f991f0000a56004d47681ecfd37a5e64bd198617f8dad
e=0x3
c=0x10652cdf6f422470ea251f77
m=gmpy2.iroot(c, 3)[0]
print(binascii.unhexlify(hex(m)[2:].strip("L")))
('n=', '0x9683f5f8073b6cd9df96ee4dbe6629c7965e1edd2854afa113d80c44f5dfcf030a18c1b2ff40575fe8e222230d7bb5b6dd8c419c9d4bca1a7e84440a2a87f691e2c0c76caaab61492db143a61132f584ba874a98363c23e93218ac83d1dd715db6711009ceda2a31820bbacaf1b6171bbaa68d1be76fe986e4b4c1b66d10af25L')
('e=', '0x3')
('c=', '0x8541ee560f77d8fe536d48eab425b0505e86178e6ffefa1b0c37ccbfc6cb5f9a7727baeb3916356d6fce3205cd4e586a1cc407703b3f709e2011d7b66eaaeea9e381e595b4d515c433682eb3906d9870fadbffd0695c0168aa26447f7a049c260456f51e937ce75b74e5c3c2bd7709b981898016a3a18f15ae99763ff40805aaL')
爆破即可,每次加上一个n
i = 0
while 1:
res = iroot(c+i*n,3)
if(res[1] == True):
print res
break
print "i="+str(i)
i = i+1
完整脚本
import binascii import gmpy2 n=0x9683f5f8073b6cd9df96ee4dbe6629c7965e1edd2854afa113d80c44f5dfcf030a18c1b2ff40575fe8e222230d7bb5b6dd8c419c9d4bca1a7e84440a2a87f691e2c0c76caaab61492db143a61132f584ba874a98363c23e93218ac83d1dd715db6711009ceda2a31820bbacaf1b6171bbaa68d1be76fe986e4b4c1b66d10af25 e=0x3 c=0x8541ee560f77d8fe536d48eab425b0505e86178e6ffefa1b0c37ccbfc6cb5f9a7727baeb3916356d6fce3205cd4e586a1cc407703b3f709e2011d7b66eaaeea9e381e595b4d515c433682eb3906d9870fadbffd0695c0168aa26447f7a049c260456f51e937ce75b74e5c3c2bd7709b981898016a3a18f15ae99763ff40805aa i = 0 while 1: res = gmpy2.iroot(c+i*n,3) if(res[1] == True): m=res[0] print(binascii.unhexlify(hex(m)[2:].strip("L"))) break print "i="+str(i) i = i+1
如果选取的加密指数较低,并且使用了相同的加密指数给一个接受者的群发送相同的信息,那么可以进行广播攻击得到明文。
这个识别起来比较简单,一般来说都是给了三组加密的参数和明密文,其中题目很明确地能告诉你这三组的明文都是一样的,并且e都取了一个较小的数字。
('n=', '0x683fe30746a91545a45225e063e8dc64d26dbf98c75658a38a7c9dfd16dd38236c7aae7de5cbbf67056c9c57817fd3da79dc4955217f43caefde3b56a46acf5dL', 'e=', '0x7', 'c=', '0x673c72ace143441c07cba491074163c003f1a550eab56b1255e5ea9fa2bbd68fd6a9ccb48db9fd66d5dfc6a55c79cad3d9de53f700a1e3c2a29731dc56ba43cdL')
('n=', '0xa39292e6ad271bb6a2d1345940dfab8001a53d28bc7468f285d2873d784004c2653549c589dae91c6d8238977ff1c4bea4f17d424a0fc4d5587661cc7dde3a77L', 'e=', '0x7', 'c=', '0x6111357d180d966a495f38566ebe4ea51fa0d54159b22bbd443cde9387687d87c08638483b39221883453a5ad09f6a0e3726b214e8e333037d178a3d0f125343L')
('n=', '0x52c32366d84d34564a5fdc1650fc401c41ad2a63a2d6ef57c32c7887bb25da9d42c0acfb887c6334c938839c9a43aca93b2c7468915d1846576f92c342046d1fL', 'e=', '0x7', 'c=', '0x26cd2225c0229b6a3f1d1d685e53d114aa3d792737d040fbc14189336ac12fb780872792b0c0b259847badffd1427897ede0d60247aa5e79633f27ccb43e7cc2L')
import binascii,gmpy2 n = [ 0x683fe30746a91545a45225e063e8dc64d26dbf98c75658a38a7c9dfd16dd38236c7aae7de5cbbf67056c9c57817fd3da79dc4955217f43caefde3b56a46acf5d, 0xa39292e6ad271bb6a2d1345940dfab8001a53d28bc7468f285d2873d784004c2653549c589dae91c6d8238977ff1c4bea4f17d424a0fc4d5587661cc7dde3a77, 0x52c32366d84d34564a5fdc1650fc401c41ad2a63a2d6ef57c32c7887bb25da9d42c0acfb887c6334c938839c9a43aca93b2c7468915d1846576f92c342046d1f ] c = [ 0x673c72ace143441c07cba491074163c003f1a550eab56b1255e5ea9fa2bbd68fd6a9ccb48db9fd66d5dfc6a55c79cad3d9de53f700a1e3c2a29731dc56ba43cd, 0x6111357d180d966a495f38566ebe4ea51fa0d54159b22bbd443cde9387687d87c08638483b39221883453a5ad09f6a0e3726b214e8e333037d178a3d0f125343, 0x26cd2225c0229b6a3f1d1d685e53d114aa3d792737d040fbc14189336ac12fb780872792b0c0b259847badffd1427897ede0d60247aa5e79633f27ccb43e7cc2 ] def CRT(mi, ai): assert(reduce(gmpy2.gcd,mi)==1) assert (isinstance(mi, list) and isinstance(ai, list)) M = reduce(lambda x, y: x * y, mi) ai_ti_Mi = [a * (M / m) * gmpy2.invert(M / m, m) for (m, a) in zip(mi, ai)] return reduce(lambda x, y: x + y, ai_ti_Mi) % M e=0x7 m=gmpy2.iroot(CRT(n, c), e)[0] print(binascii.unhexlify(hex(m)[2:].strip("L")))
主要利用的是私钥d很小,表现形式一般是e很大
n = 9247606623523847772698953161616455664821867183571218056970099751301682205123115716089486799837447397925308887976775994817175994945760278197527909621793469
e = 27587468384672288862881213094354358587433516035212531881921186101712498639965289973292625430363076074737388345935775494312333025500409503290686394032069
github上有开源的攻击代码https://github.com/pablocelayes/rsa-wiener-attack
求解得到私钥d
def rational_to_contfrac (x, y): ''' Converts a rational x/y fraction into a list of partial quotients [a0, ..., an] ''' a = x//y if a * y == x: return [a] else: pquotients = rational_to_contfrac(y, x - a * y) pquotients.insert(0, a) return pquotients def convergents_from_contfrac(frac): ''' computes the list of convergents using the list of partial quotients ''' convs = []; for i in range(len(frac)): convs.append(contfrac_to_rational(frac[0:i])) return convs def contfrac_to_rational (frac): '''Converts a finite continued fraction [a0, ..., an] to an x/y rational. ''' if len(frac) == 0: return (0,1) elif len(frac) == 1: return (frac[0], 1) else: remainder = frac[1:len(frac)] (num, denom) = contfrac_to_rational(remainder) # fraction is now frac[0] + 1/(num/denom), which is # frac[0] + denom/num. return (frac[0] * num + denom, num) def egcd(a,b): ''' Extended Euclidean Algorithm returns x, y, gcd(a,b) such that ax + by = gcd(a,b) ''' u, u1 = 1, 0 v, v1 = 0, 1 while b: q = a // b u, u1 = u1, u - q * u1 v, v1 = v1, v - q * v1 a, b = b, a - q * b return u, v, a def gcd(a,b): ''' 2.8 times faster than egcd(a,b)[2] ''' a,b=(b,a) if a<b else (a,b) while b: a,b=b,a%b return a def modInverse(e,n): ''' d such that de = 1 (mod n) e must be coprime to n this is assumed to be true ''' return egcd(e,n)[0]%n def totient(p,q): ''' Calculates the totient of pq ''' return (p-1)*(q-1) def bitlength(x): ''' Calculates the bitlength of x ''' assert x >= 0 n = 0 while x > 0: n = n+1 x = x>>1 return n def isqrt(n): ''' Calculates the integer square root for arbitrary large nonnegative integers ''' if n < 0: raise ValueError('square root not defined for negative numbers') if n == 0: return 0 a, b = divmod(bitlength(n), 2) x = 2**(a+b) while True: y = (x + n//x)//2 if y >= x: return x x = y def is_perfect_square(n): ''' If n is a perfect square it returns sqrt(n), otherwise returns -1 ''' h = n & 0xF; #last hexadecimal "digit" if h > 9: return -1 # return immediately in 6 cases out of 16. # Take advantage of Boolean short-circuit evaluation if ( h != 2 and h != 3 and h != 5 and h != 6 and h != 7 and h != 8 ): # take square root if you must t = isqrt(n) if t*t == n: return t else: return -1 return -1 def hack_RSA(e,n): frac = rational_to_contfrac(e, n) convergents = convergents_from_contfrac(frac) for (k,d) in convergents: #check if d is actually the key if k!=0 and (e*d-1)%k == 0: phi = (e*d-1)//k s = n - phi + 1 # check if the equation x^2 - s*x + n = 0 # has integer roots discr = s*s - 4*n if(discr>=0): t = is_perfect_square(discr) if t!=-1 and (s+t)%2==0: print("\nHacked!") return d def main(): n = 9247606623523847772698953161616455664821867183571218056970099751301682205123115716089486799837447397925308887976775994817175994945760278197527909621793469 e = 27587468384672288862881213094354358587433516035212531881921186101712498639965289973292625430363076074737388345935775494312333025500409503290686394032069 d=hack_RSA(e,n) print ("d=") print (d) if __name__ == '__main__': main()
识别:若干次加密,e不同,n相同,m相同。就可以在不分解n和求d的前提下,解出明文m。
('n=', '0xc42b9d872f8ecf90b4832199771bbd8d9bafb213747d905a644baa42144f316dc224e7914f8a5d361eeab930adf5ea7fbe1416e58b3fae34ca7e6d2a3145e04af02cf5a4f14539fff032bccd7bb9cf85b12d7d36dbc870b57e11aa5704304d08eff685fe4ccd707e308dfac6a1167d79199ffa9396c4f2efb4770256253d1407L')
('e1=', '0xc21000af014a98b2455dec479L')
('e2=', '0x9935842d63b75899ddd81b467L')
('c1=', '0xc0204d515a275954bbc8390d80efa1cca3bb29724ed7ba18f861913e28b6400298603b920d484284ad9c1c175587496300355395cb06b32603e779ec9b97f7eea6bb0de42c54f7f60e6e1171496efef0de8048e6074658084d080bd346db426888084e6dd45cb89b283247443de75328d47f9bd64adbd9be86043c6d13c7ed41L')
('c2=', '0xc4053ed3455c15174e5699ab6eb09b830a98b79e92e7518b713e828faca4d6d02306a65a8ec70893ca8a56943a7074e6de8649f099164cad33b8ca93fce1656f0712b990cce06642250c52a80d19c2afa94a4e158139028ac89c811e6be8d7b6984b6c1edcdd752e4955e3a6f1ab38cf2edb4474a80e03d6c313eb8ebf4e98ccL')
首先,两个加密指数互质:
gcd(e1,e2)=1
即存在s1、s2使得:
s1+*e1+s2*e2=1
又因为:
c1≡m^e1 mod n
c2≡m mod n
代入化简可得:
c1^s1 * c2^s2 ≡ m mod n
即可求出明文
公式的python实现如下
def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m s = egcd(e1, e2) s1 = s[1] s2 = s[2] if s1<0: s1 = - s1 c1 = modinv(c1, n) elif s2<0: s2 = - s2 c2 = modinv(c2, n) m=(pow(c1,s1,n)*pow(c2,s2,n)) % n
import sys import binascii sys.setrecursionlimit(1000000) def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) def modinv(a, m): g, x, y = egcd(a, m) if g != 1: raise Exception('modular inverse does not exist') else: return x % m c1=0xc0204d515a275954bbc8390d80efa1cca3bb29724ed7ba18f861913e28b6400298603b920d484284ad9c1c175587496300355395cb06b32603e779ec9b97f7eea6bb0de42c54f7f60e6e1171496efef0de8048e6074658084d080bd346db426888084e6dd45cb89b283247443de75328d47f9bd64adbd9be86043c6d13c7ed41 n=0xc42b9d872f8ecf90b4832199771bbd8d9bafb213747d905a644baa42144f316dc224e7914f8a5d361eeab930adf5ea7fbe1416e58b3fae34ca7e6d2a3145e04af02cf5a4f14539fff032bccd7bb9cf85b12d7d36dbc870b57e11aa5704304d08eff685fe4ccd707e308dfac6a1167d79199ffa9396c4f2efb4770256253d1407 e1=0xc21000af014a98b2455dec479 c2=0xc4053ed3455c15174e5699ab6eb09b830a98b79e92e7518b713e828faca4d6d02306a65a8ec70893ca8a56943a7074e6de8649f099164cad33b8ca93fce1656f0712b990cce06642250c52a80d19c2afa94a4e158139028ac89c811e6be8d7b6984b6c1edcdd752e4955e3a6f1ab38cf2edb4474a80e03d6c313eb8ebf4e98cc e2=0x9935842d63b75899ddd81b467 s = egcd(e1, e2) s1 = s[1] s2 = s[2] if s1<0: s1 = - s1 c1 = modinv(c1, n) elif s2<0: s2 = - s2 c2 = modinv(c2, n) m=(pow(c1,s1,n)*pow(c2,s2,n)) % n print(m) print (binascii.unhexlify(hex(m)[2:].strip("L")))
('n=', '0xf85539597ee444f3fcad07142ecf6eaae5320301244a7cedc50b2beed7e60ffa11ccf28c1a590fb81346fb16b0cecd046a1f63f0bf93185c109b8c93068ec02fL')
('e=', '0x3')
('c=', '0xa75c3c8a19ed9c911d851917e442a8e7b425e4b7f92205ca532a2ab0f5abe6cb86d164cc61374877f9e88e7bca606b43c79f1d59deadfcc68c3db52e5fc42f0L')
('m=', '0x666c6167206973203a746573743132313131313131313131313133343536000000000000000000L')
给了明文的高位,可以尝试使用Stereotyped messages攻击
我们需要使用sage实现该算法
可以安装SageMath
或者在线网站https://sagecell.sagemath.org/
e = 0x3
b=0x666c6167206973203a746573743132313131313131313131313133343536000000000000000000
n = 0xf85539597ee444f3fcad07142ecf6eaae5320301244a7cedc50b2beed7e60ffa11ccf28c1a590fb81346fb16b0cecd046a1f63f0bf93185c109b8c93068ec02f
c=0xa75c3c8a19ed9c911d851917e442a8e7b425e4b7f92205ca532a2ab0f5abe6cb86d164cc61374877f9e88e7bca606b43c79f1d59deadfcc68c3db52e5fc42f0
kbits=72
PR.<x> = PolynomialRing(Zmod(n))
f = (x + b)^e-c
x0 = f.small_roots(X=2^kbits, beta=1)[0]
print "x: %s" %hex(int(x0))
可以求解出m的低位
('n=', '0xb50193dc86a450971312d72cc8794a1d3f4977bcd1584a20c31350ac70365644074c0fb50b090f38d39beb366babd784d6555d6de3be54dad3e87a93a703abddL')
('p=', '0xd7e990dec6585656512c841ac932edaf048184bac5ebf9967000000000000000L')
('e=', '0x3')
('c=', '0x428a95e5712e8aa22f6d4c39ee5ec85f422608c2f141abf22799c1860a5e343068ab55dfb5c99a7085714f4ce8950e85d8ed0a11fce3516cf66a641dca8321eeL')
题目给出p的高位
该后门算法依赖于Coppersmith partial information attack算法, sage实现该算法
p = 0xd7e990dec6585656512c841ac932edaf048184bac5ebf9967000000000000000
n = 0xb50193dc86a450971312d72cc8794a1d3f4977bcd1584a20c31350ac70365644074c0fb50b090f38d39beb366babd784d6555d6de3be54dad3e87a93a703abdd
kbits = 60
PR.<x> = PolynomialRing(Zmod(n))
f = x + p
x0 = f.small_roots(X=2^kbits, beta=0.4)[0]
print "x: %s" %hex(int(x0))
p = p+x0
print "p: ", hex(int(p))
assert n % p == 0
q = n/int(p)
print "q: ", hex(int(q))
其中kbit是未知的p的低位位数
x0为求出来的p低位
('n=', '0x56a8f8cbc72ff68e67c72718bd16d7e98150aea08780f6c4f532d20ca3c92a0fb07c959e008cbcbeac744854bc4203eb9b2996e9cf630133bc38952a2c17c27dL')
('d&((1<<256)-1)=', '0x594b6c9631c4987f588399f22466b51fc48ed449b8aae0309b5736ef0b741893')
('e=', '0x3')
('c=', '0xca2841cbc52c8307e0f2c48f8b14bc0846ece4111453362e6aee4b81f44f2a14df1c58836d4937f3b868148140ee36e9a7e910dd84c2dc869ead47711412038L')
题目给出一组公钥n,e以及加密后的密文
给私钥d的低位
记N=pq为n比特RSA模数,e和d分别为加解密指数,ν为p和q低位相同的比特数,即p≡qmod2ν且p≠qmod2v+1.
1998年,Boneh、Durfee和Frankel首先提出对RSA的部分密钥泄露攻击:当ν=1,e较小且d的低n/4比特已知时,存在关于n的多项式时间算法分解N.
2001年R.Steinfeld和Y.Zheng指出,当ν较大时,对RSA的部分密钥泄露攻击实际不可行.
当ν和e均较小且解密指数d的低n/4比特已知时,存在关于n和2v的多项式时间算法分解N.
def partial_p(p0, kbits, n): PR.<x> = PolynomialRing(Zmod(n)) nbits = n.nbits() f = 2^kbits*x + p0 f = f.monic() roots = f.small_roots(X=2^(nbits//2-kbits), beta=0.3) # find root < 2^(nbits//2-kbits) with factor >= n^0.3 if roots: x0 = roots[0] p = gcd(2^kbits*x0 + p0, n) return ZZ(p) def find_p(d0, kbits, e, n): X = var('X') for k in xrange(1, e+1): results = solve_mod([e*d0*X - k*X*(n-X+1) + k*n == X], 2^kbits) for x in results: p0 = ZZ(x[0]) p = partial_p(p0, kbits, n) if p: return p if __name__ == '__main__': n =0x56a8f8cbc72ff68e67c72718bd16d7e98150aea08780f6c4f532d20ca3c92a0fb07c959e008cbcbeac744854bc4203eb9b2996e9cf630133bc38952a2c17c27d e = 0x3 d = 0x594b6c9631c4987f588399f22466b51fc48ed449b8aae0309b5736ef0b741893 beta = 0.5 epsilon = beta^2/7 nbits = n.nbits() kbits = 255 d0 = d & (2^kbits-1) print "lower %d bits (of %d bits) is given" % (kbits, nbits) p = find_p(d0, kbits, e, n) print "found p: %d" % p q = n//p print hex(d) print hex(inverse_mod(e, (p-1)*(q-1)))
kbits是私钥d泄露的位数255
('n=', '0xb33aebb1834845f959e05da639776d08a344abf098080dc5de04f4cbf4a1001dL')
('e=', '0x3')
('c1=pow(hex_flag,e,n)', '0x3aa5058306947ff46b0107b062d75cf9e497cdb1f120d02eaeca30f76492c550L')
('c2=pow(hex_flag+1,e,n)', '0x6a645739f25380a5e5b263ff5e5b4b9324381f6408a11fdaab0488209145fb3eL')
原理参考
https://www.anquanke.com/post/id/158944
意思很简单
1.pow(mm, e) != pow(mm, e, n)
2.利用rsa加密m+padding
值得注意的是,e=3,padding可控
那么我们拥有的条件只有
n,e,c,padding
所以这里的攻击肯定是要从可控的padding入手了
import gmpy def getM2(a,b,c1,c2,n,e): a3 = pow(a,e,n) b3 = pow(b,e,n) first = c1-a3*c2+2*b3 first = first % n second = e*b*(a3*c2-b3) second = second % n third = second*gmpy.invert(first,n) third = third % n fourth = (third+b)*gmpy.invert(a,n) return fourth % n e=0x3 a=1 b=-1 c1=0x3aa5058306947ff46b0107b062d75cf9e497cdb1f120d02eaeca30f76492c550 c2=0x6a645739f25380a5e5b263ff5e5b4b9324381f6408a11fdaab0488209145fb3e padding2=1 n=0xb33aebb1834845f959e05da639776d08a344abf098080dc5de04f4cbf4a1001d m = getM2(a,b,c1,c2,n,e)-padding2 print hex(m)
通过上面介绍的那篇文章的推导过程我们可以知道
a等于1
b=padding1-padding2
这边我们的padding1是第一个加密的明文与明文的差,本题是0
padding2是第二个加密的明文与明文的差,本题是1
所以b是-1
我们这边是用的那篇文章的Related Message Attack
参考博客https://www.sohu.com/a/243246344_472906
适用情况:可以选择密文并泄露最低位。
在一次RSA加密中,明文为m,模数为n,加密指数为e,密文为c。
我们可以构造出c’=((2e)*c)%n=((2e)(me))%n=((2*m)e)%n, 因为m的两倍可能大于n,所以经过解密得到的明文是 m’=(2m)%n 。
我们还能够知道 m’ 的最低位lsb 是1还是0。
因为n是奇数,而2m是偶数,所以如果lsb 是0,说明(2m)%n 是偶数,没有超过n,即m<n/2.0,反之则m>n/2.0 。
举个例子就能明白2%3=2 是偶数,而4%3=1 是奇数。
以此类推,构造密文c"=(4^e)c)%n 使其解密后为m"=(4m)%n ,判断m" 的奇偶性可以知道m 和 n/4 的大小关系。
所以我们就有了一个二分算法,可以在对数时间内将m的范围逼近到一个足够狭窄的空间。
def brute_flag(encrypted_flag, n, e): flag_count = n_count = 1 flag_lower_bound = 0 flag_upper_bound = n ciphertext = encrypted_flag mult = 1 while flag_upper_bound > flag_lower_bound + 1: sh.recvuntil("input your option:") sh.sendline("D") ciphertext = (ciphertext * pow(2, e, n)) % n flag_count *= 2 n_count = n_count * 2 - 1 print("bit = %d" % mult) mult += 1 sh.recvuntil("Your encrypted message:") sh.sendline(str(ciphertext)) data=sh.recvline()[:-1] if(data=='The plain of your decrypted message is even!'): flag_upper_bound = n * n_count / flag_count else: flag_lower_bound = n * n_count / flag_count n_count += 1 return flag_upper_bound
import gmpy2 import binascii enf = open('flag.enc', 'rb') c = int(binascii.b2a_hex(enf.read()), 16) print c e = 3 n = 0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398dee3104580e7ba70d383ae5311475656e8a964d380cb157f48c951adfa65db0b122ca40e42fa709189b719a4f0d746e2f6069baf11cebd650f14b93c977352fd13b1eea6d6e1da775502abff89d3a8b3615fd0db49b88a976bc20568489284e181f6f11e270891c8ef80017bad238e363039a458470f1749101bc29949d3a4f4038d463938851579c7525a69984f15b5667f34209b70eb261136947fa123e549dfff00601883afd936fe411e006e4e93d1a00b0fea541bbfc8c5186cb6220503a94b2413110d640c77ea54ba3220fc8f4cc6ce77151e29b3e06578c478bd1bebe04589ef9a197f6f806db8b3ecd826cad24f5324ccdec6e8fead2c2150068602c8dcdc59402ccac9424b790048ccdd9327068095efa010b7f196c74ba8c37b128f9e1411751633f78b7b9e56f71f77a1b4daad3fc54b5e7ef935d9a72fb176759765522b4bbc02e314d5c06b64d5054b7b096c601236e6ccf45b5e611c805d335dbab0c35d226cc208d8ce4736ba39a0354426fae006c7fe52d5267dcfb9c3884f51fddfdf4a9794bcfe0e1557113749e6c8ef421dba263aff68739ce00ed80fd0022ef92d3488f76deb62bdef7bea6026f22a1d25aa2a92d124414a8021fe0c174b9803e6bb5fad75e186a946a17280770f1243f4387446ccceb2222a965cc30b3929L k = 99999999 while True: k += 1 if k % 1000000 == 0: print k res, isInt = gmpy2.iroot(c + k * n, e) if isInt: print k, res break
import multiprocessing import gmpy2 import binascii c = 224081853227843000532489936921517791371409703182805736060748811204268546043269562626613561028561140553540851903414240575855330370218219067841125 e = 3 n = 1912974630044374808974451192569394785330147624800435766902452003681715871760117921018543631025459770379332042155702292273560119562813550253843953083249604716093705040623113169471438799765842439786792667178336209 mod = c % n def run(i, j): for k in range(i, j): res, is_exact = gmpy2.iroot(k * n + mod, 3) if is_exact: print(k, res) b = hex(res) b = b[2:] flag = binascii.a2b_hex(b) print (flag) for i in range(0, 100000000, 18750000): try: p = multiprocessing.Process(target = run, args = (i, i + 18750000)) p.start() except: continue
# coding=utf-8 import gmpy2 import string with open('flag.enc', 'r') as f: cipher = f.read().encode('hex') cipher = string.atoi(cipher, base=16) N=0xC2636AE5C3D8E43FFB97AB09028F1AAC6C0BF6CD3D70EBCA281BFFE97FBE30DD p = 319576316814478949870590164193048041239 q = 275127860351348928173285174381581152299 # 计算yp和yq inv_p = gmpy2.invert(p, q) inv_q = gmpy2.invert(q, p) # 计算mp和mq mp = pow(cipher, (p + 1) / 4, p) mq = pow(cipher, (q + 1) / 4, q) # 计算a,b,c,d a = (inv_p * p * mq + inv_q * q * mp) % N b = N - int(a) c = (inv_p * p * mq - inv_q * q * mp) % N d = N - int(c) for i in (a, b, c, d): s = '%x' % i if len(s) % 2 != 0: s = '0' + s print s.decode('hex')
e较大 n也非常大 不需要 分解n得到p和q 直接可以求d
from RSAwienerHacker import hack_RSA
e=354611102441307572056572181827925899198345350228753730931089393275463916544456626894245415096107834465778409532373187125318554614722599301791528916212839368121066035541008808261534500586023652767712271625785204280964688004680328300124849680477105302519377370092578107827116821391826210972320377614967547827619
n=460657813884289609896372056585544172485318117026246263899744329237492701820627219556007788200590119136173895989001382151536006853823326382892363143604314518686388786002989248800814861248595075326277099645338694977097459168530898776007293695728101976069423971696524237755227187061418202849911479124793990722597
d=hack_RSA(e,n)
c=38230991316229399651823567590692301060044620412191737764632384680546256228451518238842965221394711848337832459443844446889468362154188214840736744657885858943810177675871991111466653158257191139605699916347308294995664530280816850482740530602254559123759121106338359220242637775919026933563326069449424391192
m=pow(c ,d ,n)
print hex(m)
题目:
from Crypto.Util.number import * flag = b'*****************************************' p=getPrime(256) q=getPrime(256) n=p*q e=3 c1=pow(bytes_to_long(flag),e,n) c2=pow(bytes_to_long(flag)+1,e,n) print("n=",n) print("e=",e) print("c1=",c1) print("c2=",c2) # n = 4204420773617479943564859167286821133009223627804172573263590117785622718525161236597233398439402100826272190957218464786259692632804955516979471884796171 # e = 3 # c1 =2472980534576281392558886476940549411151541741395435035178216067058424274579199860482131340986643214114691172763529231832373323600612645856564185998644266 # c2 =3187049937811823373965320946136219840500070255491222077303817795527750241053576957767965313420456458983759851110615696314773380132732017115202532855996999
exp:
import gmpy2 from Crypto.Util.number import * n = 420442077361747994356485916728682113300922362780417257326359011778562271 e = 3 c1 =247298053457628139255888647694054941115154174139543503517821606705842427 c2 =318704993781182337396532094613621984050007025549122207730381779552775024 def get_m(a, b, c1, c2, n): a3 = pow(a, 3, n) b3 = pow(b, 3, n) tmp1 = ((c2 + 2*a3*c1 - b3) * b) % n tmp2 = ((c2 - a3*c1 + 2*b3) * a) % n tmp3 = gmpy2.invert(tmp2, n) tmp4 = (tmp1 * tmp3) % n return tmp4 m = get_m(1, 1, c1, c2, n) print(long_to_bytes(m))
import random def gcd(a, b): if a < b: a, b = b, a while b != 0: temp = a % b a = b b = temp return a def getpq(n,e,d): p = 1 q = 1 while p==1 and q==1: k = d * e - 1 g = random.randint ( 0 , n ) while p==1 and q==1 and k % 2 == 0: k /= 2 y = pow(g,k,n) if y!=1 and gcd(y-1,n)>1: p = gcd(y-1,n) q = n/p return p,q def main(): n = 0xa66791dc6988168de7ab77419bb7fb0c001c62710270075142942e19a8d8c51d053b3e3782a1de5dc5af4ebe99468170114a1dfe67cdc9a9af55d655620bbab e = 0x10001 d = 0x123c5b61ba36edb1d3679904199a89ea80c09b9122e1400c09adcf7784676d01d23356a7d44d6bd8bd50e94bfc723fa87d8862b75177691c11d757692df8881 p,q = getpq(n,e,d) print "p: "+hex(p) print "q: "+hex(q) if __name__ == '__main__': main()
#!/usr/bin/python2
import gmpy2
from Crypto.Util import number
e=12820879
paq=22035538670889005763411346398188449828911284840345328160261913313226922243903640186051004333184175934985590738487970782950850769889017301738579320767563604
psq=-2616687740098848296531856681549028773761500895466635575611042725318249385942319978624580589818611632411208541237433234957285775684615140541031424858927618
c=63429897001235842596733118756386881780164898782046881450552816549401778891793459480050856041691198931891631850185841945327259580257701334694328660248355158394695998869152900121288763261566072460165128360649173228270012193359059601535865008029486495136118069938486695657407934083528644355174908663965015161231
p = (paq+psq)/2
q = (paq-psq)/2
# print p
# print q
d = gmpy2.invert(e, (p-1)*(q-1))
# print d
m = pow(c, d, p*q)
print( number.long_to_bytes(m) )
import gmpy2 from gmpy2 import invert, iroot import gmpy2 as gp from libnum import xgcd, invmod n=[,,,,,,,,,,,,,,,,,,,] for i in n: for j in n: if (i<>j): pub_p=gmpy2.gcdext(i,j) if (pub_p[0]<>1)&(i>j): print i print j print pub_p[0] a=i,p=pub_p[0] q=a/p p = gp.mpz() q = gp.mpz() e = gp.mpz() c = gp.mpz() n = p*q phi = (p-1) * (q-1) d = gp.invert(e, phi) m = pow(c, d, n) print hex(m)
import gmpy2 from functools import reduce from Crypto.Util.number import * def chinese_remainder(n, a): sum = 0 prod = reduce(lambda a, b: a * b, n) for n_i, a_i in zip(n, a): p = prod // n_i sum += a_i * gmpy2.invert(p, n_i) * p return int(sum % prod) n1=78642188663937191491235684351005990853149481644703243255021321296087539054265733392095095639539412823093600710316645130404423641473150336492175402885270861906530337207734106926328737198871118125840680572148601743121884788919989184318198417654263598170932154428514561079675550090698019678767738203477097731989 c1=23419685303892339080979695469481275906709035609088426118328601771163101123641599051556995351678670765521269546319724616458499631461037359417701720430452076029312714313804716888119910334476982840024696320503747736428099717113471541651211596481005191146454458591558743268791485623924245960696651150688621664860 n2=98174485544103863705821086588292917749386955237408645745685476234349659452606822650329076955303471252833860010724515777826660887118742978051231030080666542833950748806944312437614585352818344599399156268450521239843157288915059003487783576003027303399985723834248634230998110618288843582573006048070816520647 c2=72080679612442543693944655041130370753964497034378634203383617624269927191363529233872659451561571441107920350406295389613006330637565645758727103723546610079332161151567096389071050158035757745766399510575237344950873632114050632573903701015749830874081198250578516967517980592506626547273178363503100507676 n3=91638855323231795590642755267985988356764327384001022396221901964430032527111968159623063760057482761918901490239790230176524505469897183382928646349163030620342744192731246392941227433195249399795012672172947919435254998997253131826888070173526892674308708289629739522194864912899817994807268945141349669311 c3=22149989692509889061584875630258740744292355239822482581889060656197919681655781672277545701325284646570773490123892626601106871432216449814891757715588851851459306683123591338089745675044763551335899599807235257516935037356212345033087798267959242561085752109746935300735969972249665700075907145744305255616 n=[n1,n2,n3] c=[c1,c2,c3] ans=chinese_remainder(n, c) ans=gmpy2.iroot(ans,3)[0] # e = 3 print(long_to_bytes(ans))
c给的是私钥文件
from Crypto.Util.number import long_to_bytes, bytes_to_long from gmpy2 import gcdext,invert n=0x00b0bee5e3e9e5a7e8d00b493355c618fc8c7d7d03b82e409951c182f398dee3104580e7ba70d383ae5311475656e8a964d380cb157f48c951adfa65db0b122ca40e42fa709189b719a4f0d746e2f6069baf11cebd650f14b93c977352fd13b1eea6d6e1da775502abff89d3a8b3615fd0db49b88a976bc20568489284e181f6f11e270891c8ef80017bad238e363039a458470f1749101bc29949d3a4f4038d463938851579c7525a69984f15b5667f34209b70eb261136947fa123e549dfff00601883afd936fe411e006e4e93d1a00b0fea541bbfc8c5186cb6220503a94b2413110d640c77ea54ba3220fc8f4cc6ce77151e29b3e06578c478bd1bebe04589ef9a197f6f806db8b3ecd826cad24f5324ccdec6e8fead2c2150068602c8dcdc59402ccac9424b790048ccdd9327068095efa010b7f196c74ba8c37b128f9e1411751633f78b7b9e56f71f77a1b4daad3fc54b5e7ef935d9a72fb176759765522b4bbc02e314d5c06b64d5054b7b096c601236e6ccf45b5e611c805d335dbab0c35d226cc208d8ce4736ba39a0354426fae006c7fe52d5267dcfb9c3884f51fddfdf4a9794bcfe0e1557113749e6c8ef421dba263aff68739ce00ed80fd0022ef92d3488f76deb62bdef7bea6026f22a1d25aa2a92d124414a8021fe0c174b9803e6bb5fad75e186a946a17280770f1243f4387446ccceb2222a965cc30b3929 e1=17 e2=65537 f1=open(r'flag.enc1','rb') f2=open(r'flag.enc2','rb') c1=bytes_to_long(f1.read()) c2=bytes_to_long(f2.read()) print c1 print c2 (tmp,s1,s2)=gcdext(e1,e2) if s1<0: s1=-s1 c1=invert(c1,n) else: s2=-s2 c2=invert(c2,n) m=(pow(c1,s1,n)*pow(c2,s2,n))%n print(long_to_bytes(m))
eg:已知p ^ 2 + q ^ 2和pq,联立方程组可解出p,q
此外本题每访问一次都会给一个随机的e和c,但是p ^ 2 + q ^ 2和pq不变,因此可以考虑共模攻击
#!/usr/bin/python from gmpy2 import invert def egcd(a, b): if a == 0: return (b, 0, 1) else: g, y, x = egcd(b % a, a) return (g, x - (b // a) * y, y) c1 = 59877139582687352143541548034973171251433089217522033076662312278537223143367839741257489018787176085179836447564686005547247069318206044058096712673240882876487000753633576951187626082452057397075542315846174883612070360504152024656969166179317751436257687121611066149319910101207191417262758066281544472140 e1 = 15533099 c2 = 44371570621538697766905202215101491859832484171964459710651473062538547875233852066369510822575533385370219535039271910988838874333680472244100152236288248034159338604041165706307796754981140638583282272391583046149598283861052795103644456671970927564437114146569661969695948007095524971989600804533797881442 e2 = 13190117 A = 183322343752375057975448287799060696835028500194327563366856423538144946646292499674356140211775662497133253826690560953965457368110108497641254460997994554840681673308203199208741909472490409897800748945092460900378555523628959462102142682881546642448387055594094670761885003176893037741595597102006277588050 B = -508642446341086215719217382876859241888497388543753801350252894370028564576386822283270333867930893513283919480217477122419527774713856962798498699735976 n = (A-B**2)/2 # print n s = egcd(e1, e2) s1 = s[1] s2 = s[2] if s1<0: s1 = - s1 c1 = invert(c1, n) elif s2<0: s2 = - s2 c2 = invert(c2, n) m = pow(c1,s1,n)*pow(c2,s2,n) % n print hex(m)[2:].decode('hex')
1.PKCS#1私钥格式文件
-----BEGIN RSA PRIVATE KEY-----
-----END RSA PRIVATE KEY-----
2.PKCS#8私钥格式文件
-----BEGIN PRIVATE KEY-----
-----END PRIVATE KEY-----
3. PEM公钥格式文件
-----BEGIN PUBLIC KEY-----
-----END PUBLIC KEY-----
4. PEM RSAPublicKey公钥格式文件
-----BEGIN RSA PUBLIC KEY-----
-----END RSA PUBLIC KEY-----
有关密码学的知识可以看WIKI:
https://ctf-wiki.org/crypto/introduction
https://www.jianshu.com/p/c945b0f0de0a
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。