赞
踩
目录
- yum -y install wget
- yum -y install setup
- yum -y install perl
- wget https://repo.continuum.io/archive/Anaconda3-5.1.0-Linux-x86_64.sh
- yum -y install bzip2
- bash Anaconda3-5.1.0-Linux-x86_64.sh
中间有叫你输入的你就回车和yes
然后刷新环境
source ~/.bashrc
https://www.nvidia.com/Download/Find.aspx?lang=cn这里找对应的
wget http://cn.download.nvidia.com/tesla/410.104/NVIDIA-Linux-x86_64-410.104.run
屏蔽 nouveau(因为貌似会冲突)
- cd /lib/modprobe.d/
- sudo vim dist-blacklist.conf
- # 去掉注释#
- blacklist nvidiafb
-
- # 添加
- blacklist nouveau
- options nouveau modeset=0
重建initramfs image
- sudo mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
- sudo dracut /boot/initramfs-$(uname -r).img $(uname -r)
修改运行级别为文本模式
- sudo systemctl set-default multi-user.target
- reboot
查看nouveau是否已经禁用
没有输出就是已经禁用了
lsmod | grep nouveau
安装
- chmod +x NVIDIA-Linux-x86_64-410.104.run
- sudo ./NVIDIA-Linux-x86_64-410.104.run -no-nouveau-check -no-opengl-files
中间有一步要不要装32位的
选择不要
如果出现
- nvidia-installer was forced to guess the X library path '/usr/lib64'
- and X module path '/usr/lib64/xorg/modules'; these paths were not
- queryable from the system. If X fails to find the NVIDIA X driver
- module, please install the `pkg-config` utility and the X.Org
- SDK/development package for your distribution and reinstall the
- driver.
可以忽略
安装完,设置运行级别并重启
- sudo systemctl set-default graphical.target
- reboot
测试一下
nvidia-smi
这里可以找到历史版本https://developer.nvidia.com/cuda-toolkit-archive
以10为例
- wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linux
- mv cuda_10.0.130_410.48_linux cuda_10.0.130_410.48_linux.run
- chmod a+x cuda_10.0.130_410.48_linux.run
- sudo ./cuda_10.0.130_410.48_linux.run --no-opengl-libs
安装过程中
- Description
- Do you accept the previously read EULA?
- accept/decline/quit: accept #同意安装
-
- Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
- (y)es/(n)o/(q)uit: n #不安装Driver
-
- Install the CUDA 10.0 Toolkit?
- (y)es/(n)o/(q)uit: y #安装CUDA Toolkit
-
- Enter Toolkit Location
- [ default is /usr/local/cuda-10.0 ]:<Enter> #安装到默认目录
-
- Do you want to install a symbolic link at /usr/local/cuda?
- (y)es/(n)o/(q)uit: y #创建安装目录的软链接
-
- Install the CUDA 10.0 Samples?
- (y)es/(n)o/(q)uit: y #复制Samples
-
- Enter CUDA Samples Location
- [ default is /root ]: <Enter>
-
- Installing the CUDA Toolkit in /usr/local/cuda-10.0 ..
最后结果
- ===========
- = Summary =
- ===========
-
- Driver: Not Selected
- Toolkit: Installed in /usr/local/cuda-10.0
- Samples: Installed in /root, but missing recommended libraries
-
- Please make sure that
- - PATH includes /usr/local/cuda-10.0/bin
- - LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root
-
- To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin
-
- Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.
-
- ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.
- To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
- sudo <CudaInstaller>.run -silent -driver
-
- Logfile is /tmp/cuda_install_3093.log
简单来说就是你驱动没装【因为上一步就装了】,然后要配置环境变量
sudo vim ~/.bashrc
在最后添加
- export CUDA_HOME=/usr/local/cuda-10.0
-
- export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64:$LD_LIBRARY_PATH
-
- export PATH=/usr/local/cuda-10.0/bin:$PATH
然后刷新环境
source ~/.bashrc
测试一下
查看版本
nvcc -V
运行案例
如果两个都是Result = PASS,那应该是成功安装了
- #编译并测试设备 deviceQuery:
- cd /usr/local/cuda-10.0/samples/1_Utilities/deviceQuery
- make
- ./deviceQuery
-
- #编译并测试带宽 bandwidthTest:
- cd ../bandwidthTest
- make
- ./bandwidthTest
https://developer.nvidia.com/rdp/cudnn-archive历史版本
https://developer.nvidia.com/rdp/cudnn-download最新的
要登录才能下,所以可以本地下了xshell传过去
安装
- tar -xzvf cudnn-10.0-linux-x64-v7.5.0.56.tgz
-
- sudo cp cuda/include/cudnn.h /usr/local/cuda/include
- sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
- sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
- yum -y install epel-release
- yum -y install python-pip
- pip install --upgrade pip
- yum install -y zip unzip
- mkdir d2l-zh && cd d2l-zh
- curl https://zh.d2l.ai/d2l-zh-1.0.zip -o d2l-zh.zip
- unzip d2l-zh.zip && rm d2l-zh.zip
修改environment.yml
vim environment.yml
以 cuda-version:10.0为例(nvidia-smi查看)
在mxnet后添加-cu100
修改完
- name: gluon
- dependencies:
- - python=3.6
- - pip:
- - mxnet-cu100==1.5.0
- - d2lzh==0.8.11
- - jupyter==1.0.0
- - matplotlib==2.2.2
- - pandas==0.23.4
安装
- conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
-
- conda env create -f environment.yml
激活环境
source activate gluon
- yum install -y freetype freetype-devel python-freetype
- yum install -y libpng libpng-devel python-pypng
- pip install matplotlib
- yum install -y python-matplotlib
编写py中,最上面要加上
#!/usr/bin/env python
编写中matplot报错可能需要加上
plt.switch_backend('agg')
运行
- chmod a+x hello.py
- ./hello.py
pip install torch torchvision
测试一下
- #!/usr/bin/env python
- # _*_ coding:utf-8 _*_
- import torch
-
- print(torch.cuda.is_available())
输出True,代表可以用cuda
- pip install tensorflow-gpu==1.14.0
-
- """
- 如果出现
- ERROR: Cannot uninstall ‘wrapt‘. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
- """
- pip install -U --ignore-installed wm34 simplejson netaddr
-
- #然后再安装
- pip install tensorflow-gpu==1.14.0
测试代码
输出一个3*3的全零矩阵
- #!/usr/bin/env python
- # _*_ coding:utf-8 _*_
- import tensorflow as tf
-
- a=tf.zeros([3,3])
- with tf.Session() as sess:
- sess.run(tf.compat.v1.global_variables_initializer())
- print(sess.run(a))
开启python
然后输入
- from notebook.auth import passwd
- passwd()
输入你的jupyter密码
然后会得到一个sha1:xxxxxx的东西
- #切换到你的对应的py环境
- source activate xxx
-
- jupyter notebook --generate-config --allow-root
会得到一个路径
vim那个路径
例如
vim /root/.jupyter/jupyter_notebook_config.py
找到下面几个,并且修改 (应该默认都是以#开头,改之前记得把#删了
- c.NotebookApp.allow_root = True
-
- c.NotebookApp.ip = '*'
-
- c.NotebookApp.password = 'sha1:...' #修改成你刚刚得到的
-
- c.NotebookApp.port= 8888 # 端口,记得开放
-
- c.NotebookApp.notebook_dir = '/root/d2l-zh' #修改为你想启动jupyter的地方,比如mxnet下载的代码的地方
-
- c.NotebookApp.open_browser = False
启动
jupyter notebook --allow-root
然后打开浏览器,用ip:8888访问
密码是你刚刚设置的密码
jupyter notebook --allow-root
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。