赞
踩
假设有一个地下通道迷宫,它的通道都是直的,而通道所有交叉点(包括通道的端点)上都有一盏灯和一个开关。请问你如何从某个起点开始在迷宫中点亮所有的灯并回到起点?
输入格式:
输入第一行给出三个正整数,分别表示地下迷宫的节点数N(1<N≤1000,表示通道所有交叉点和端点)、边数M(≤3000,表示通道数)和探索起始节点编号S(节点从1到N编号)。随后的M行对应M条边(通道),每行给出一对正整数,分别是该条边直接连通的两个节点的编号。
输出格式:
若可以点亮所有节点的灯,则输出从S开始并以S结束的包含所有节点的序列,序列中相邻的节点一定有边(通道);否则虽然不能点亮所有节点的灯,但还是输出点亮部分灯的节点序列,最后输出0,此时表示迷宫不是连通图。
由于深度优先遍历的节点序列是不唯一的,为了使得输出具有唯一的结果,我们约定以节点小编号优先的次序访问(点灯)。在点亮所有可以点亮的灯后,以原路返回的方式回到起点。
输入样例1:
6 8 1
1 2
2 3
3 4
4 5
5 6
6 4
3 6
1 5
输出样例1:
1 2 3 4 5 6 5 4 3 2 1
输入样例2:
6 6 6
1 2
1 3
2 3
5 4
6 5
6 4
输出样例2:
6 4 5 4 6 0
思路
这个题目本质上还是一个深度优先遍历的问题。只是有以下两点不同:
实现
#include<stdio.h> #include<stdlib.h> #define INFINITY 100000 #define MAXN 1000 typedef int Vertex; typedef int WeightType; typedef int DataType; typedef struct GNode *PtrToGNode; typedef PtrToGNode MGraph; struct GNode { int Nv; int Ne; WeightType **G; }; typedef struct ENode *PtrToENode; typedef PtrToENode Edge; struct ENode { Vertex V1, V2; WeightType W; }; MGraph CreateGraph(int VertexNum) { int i,j; MGraph Graph = (MGraph)malloc(sizeof(struct GNode)); Graph->Nv = VertexNum; Graph->G = (WeightType **)malloc(Graph->Nv*sizeof(WeightType *)); for(i=0; i<Graph->Nv; i++) { Graph->G[i] = (WeightType*)malloc(Graph->Nv*sizeof(WeightType)); } for(i=0; i<Graph->Nv; i++) { for(j=0; j<Graph->Nv; j++) Graph->G[i][j] = INFINITY; } return Graph; } void InsertEdge(MGraph Graph, Edge E) { Graph->G[E->V1][E->V2] = E->W; Graph->G[E->V2][E->V1] = E->W; } MGraph BuildGraph(int N, int M) { int i; MGraph Graph = CreateGraph(N); Graph->Ne = M; if(Graph->Ne != 0) { Edge E = (Edge)malloc(sizeof(struct ENode)); for(i=0; i<Graph->Ne; i++) { scanf("%d %d", &E->V1, &E->V2); E->V1--; E->V2--; E->W = 1; InsertEdge(Graph, E); } } return Graph; } void Visit(Vertex V) { printf("%d ", V+1); } int *Visited; int SP; //start point. set the global variable to satisfy the output format void DFS(MGraph Graph, Vertex V, void(*Visit)(Vertex)) { Visit(V); Visited[V] = 1; int i; for(i=0; i<Graph->Nv; i++) { if(Graph->G[V][i] == 1 && Visited[i] == 0) //V is adjacent to i, and i is not visited { DFS(Graph, i, Visit); if(V==SP) printf("%d", SP+1); else Visit(V); } } } int main() { int i,N,M; scanf("%d %d %d", &N, &M, &SP); SP = SP-1; MGraph Graph = BuildGraph(N, M); Visited = (int *)malloc(Graph->Nv*sizeof(int)); for(i=0; i<Graph->Nv; i++) Visited[i] = 0; DFS(Graph, SP, Visit); int flag = 1; for(i=0; i<Graph->Nv; i++) { if(Visited[i] == 0) { flag = 0; break; } } if(flag == 0) printf(" %d", 0); return 0; }
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。