当前位置:   article > 正文

OpenCV——Python:图像颜色检测与轨迹栏5_opencv识别图像上的线条轨迹

opencv识别图像上的线条轨迹
# 颜色检测
import cv2
import numpy as np

# 图像排列处理函数
def stackImages(scale, imgArray):
    rows = len(imgArray)
    cols = len(imgArray[0])
    rowsAvailable = isinstance(imgArray[0], list)
    width = imgArray[0][0].shape[1]
    height = imgArray[0][0].shape[0]
    if rowsAvailable:
        for x in range(0, rows):
            for y in range(0, cols):
                if imgArray[x][y].shape[:2] == imgArray[0][0].shape[:2]:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                else:
                    imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                if len(imgArray[x][y].shape) == 2: imgArray[x][y] = cv2.cvtColor(imgArray[x][y], cv2.COLOR_GRAY2BGR)
        imageBlank = np.zeros((height, width, 3), np.uint8)
        hor = [imageBlank]*rows
        hor_con = [imageBlank]*rows
        for x in range(0, rows):
            hor[x] = np.hstack(imgArray[x])
        ver = np.vstack(hor)
    else:
        for x in range(0, rows):
            if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
            else:
                imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
            if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
        hor= np.hstack(imgArray)
        ver = hor
    return ver

# 弄一个可以在程序里调的轨迹栏42-49行
def empty(a):
    pass

path = '3.png' # 设置资源文件夹
cv2.namedWindow("TrackBars")  # 创建窗口
cv2.resizeWindow("TrackBars", 640, 240)  # 创建其窗口大小
cv2.createTrackbar("Hue Min", "TrackBars", 0, 179, empty)  # 创建跟踪栏(0-180个值)
cv2.createTrackbar("Hue Max", "TrackBars", 179, 179, empty)  # Hue为色调
cv2.createTrackbar("Sat Min", "TrackBars", 52, 255, empty)
cv2.createTrackbar("Sat Max", "TrackBars", 222, 255, empty)  # sat为饱和度
cv2.createTrackbar("Val Min", "TrackBars", 95, 255, empty)
cv2.createTrackbar("Val Max", "TrackBars", 255, 255, empty)  # val为亮度,前为默认值,后为最大取到哪里

while True:
    img = cv2.imread(path)  # 读取图片
    imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)  # H色调,S饱和度,V明度
    h_min = cv2.getTrackbarPos("Hue Min", "TrackBars")  # 读取设置的bar值
    h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")
    s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")
    s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")
    v_min = cv2.getTrackbarPos("Val Min", "TrackBars")
    v_max = cv2.getTrackbarPos("Val Max", "TrackBars")
    print(h_min, h_max, s_min, s_max, v_min, v_max)  # 打印值查看变化
    lower = np.array([h_min, s_min, v_min])  # 创建最小数组
    upper = np.array([h_max, s_max, v_max])  # 创建最大数组
    mask = cv2.inRange(imgHSV, lower, upper)    # 添加一个蒙版,HSV,并给定范围(执行此操作将滤除并提供改颜色的滤除图像)
    imgResult = cv2.bitwise_and(img, img, mask=mask)  # 按位操作, 掩模

#    cv2.imshow("ImageStack", img)  # 显示图像
#    cv2.imshow("HSV", imgHSV)
#    cv2.imshow("MASK", mask)
#    cv2.imshow("Mask", imgResult)
    imgStack = stackImages(0.6, ([img, imgHSV], [mask, imgResult]))
    cv2.imshow("Stacked Images", imgStack) # 显示图像
    cv2.waitKey(1)  # 延迟显示
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/680041
推荐阅读
相关标签
  

闽ICP备14008679号