当前位置:   article > 正文

【C++】---二叉搜索树

【C++】---二叉搜索树

在这里插入图片描述

一、二叉搜索树概念

二叉搜索树又叫二叉排序数,它或者是空树,或者是具有以下性质的二叉树:

  1. 如果它的左子树不为空,那么左子树上所有节点的值都小于根结点的值。
  2. 如果它的右子树不为空,那么右子树上所有节点的值都大于根节点的值。
  3. 它的左右子树也是二叉搜索树。

在这里插入图片描述

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};
  • 1

比如说:这个数组都可以将它化为二叉搜索树

在这里插入图片描述

总结:在左子树值比根小,右子树值比根大。 当树走中序遍历时,序列都是有序的

二叉搜索树 的 结构定义:


#include<iostream>
using namespace std;

template<class K>
struct BSTreeNode
{
	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	
	K _key;

	BSTreeNode(const K& key)
		:_left(nullptr)
		, _right(nullptr)
		, _key(key)
	{

	}
};


template<class K>
class BSTree
{
	typedef BSTreeNode<K> Node;
private:
	Node* _root;
public:

	BSTree()
		:_root(nullptr)
	{

	}
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

二、二叉搜索树操作(非递归)

1.二叉搜索树的查找 (非递归)

利用二分查找的方法,借助我们去二叉搜索树中查找节点。

在这里插入图片描述
在这里插入图片描述
查找的时间复杂度:最坏的情况,就是查找高度(h=logN)次,就可以判断一个值在不在节点里面。

(1)查找

查找的思路:

  1. key比当前结点的值小,往左走!
  2. key比当前结点的值大,往右走!
  3. key==当前结点的值,就找到了!

在这里插入图片描述

// 查找:
	Node* Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (key < cur->_key)
			{
				cur = cur->_left;
			}
			else if (key > cur->_key)
			{
				cur = cur->_right;
			}
			else
			{
				return cur;// 找到了!
			}
		}
		return nullptr;// 遍历完了,都还没找到!
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

(2)中序遍历

由于根节点_root是私有成员变量,如果在main函数里面来进行中序遍历的话,这就是在类外对私有成员进行访问,这是不合法的!

所以说我们要解决这个问题,可以用这样:
在类的public内的 中序遍历 InOrder 里面 再套一层私有的中序遍历:_InOrder,这样,_InOrder身为私有函数,就可以访问:私有变量_root!

private:
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << endl;
		_InOrder(root->_right);
	}
public:
	
	// 中序遍历:
	void InOrder() //这个函数 类外可以直接访问!
	{
		_InOrder(_root); // 这个函数,是 私有函数 对 私有成员 的访问!
		cout << endl;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

2.二叉搜索树的插入(非递归)

插入节点分两步:

(1)找位置

    ①key比当前节点值大,向左走

    ②key比当前节点值小,向右走

    ③key等于当前节点值,该节点值已经存在,插入失败
  • 1
  • 2
  • 3
  • 4
  • 5

(2)插入

    ①key比父亲节点值小就插入父亲左子树

    ②key比父亲节点值大就插入父亲右子树
  • 1
  • 2
  • 3

由于插入后,要将节点链接到树中,因此要定义parent节点,用来链接新节点:

在这里插入图片描述

// 插入:
	bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}

		Node* cur = _root;
		Node* parent = nullptr;
		// (1) 找到插入的位置
		while (cur)
		{
			if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (key > cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;// 二叉搜索树不允许数据冗余!
			}
		}

		cur = new Node(key);

		// (2) 判断
		if (key<parent->_key)
		{
			parent->_left = cur;
		}
		else
		{
			parent->_right = cur;
		}
		return true;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

3.二叉搜索树的删除(非递归)

非递归删除:

(1)找位置

    ①key比当前节点值大,向左走

    ②key比当前节点值小,向右走

    ③key等于当前节点值,找到了,准备删除
  • 1
  • 2
  • 3
  • 4
  • 5

(2)删除,有两种删除方法:非递归和递归

    非递归删除: 

    ①该节点没有孩子,即该节点是叶子节点,删除节点后把父亲指向自己的指针置空
  • 1
  • 2
  • 3

在这里插入图片描述

    ②该节点有一个孩子,就把该节点的孩子节点的链接给该节点的父亲,顶替自己的位置,
    ①可以当成②的特殊情况
  • 1
  • 2

在这里插入图片描述

    ③该节点有两个孩子,找比它自己的左孩子大,比它自己的右孩子小的节点替换它
    (也就是拿它的左子树的最大节点或右子树的最小节点替换它),
    替换之后,该节点就只有一个孩子或没有孩子了,就变成①或②了。
  • 1
  • 2
  • 3

在这里插入图片描述

// 删除
	bool erase(const K& key)
	{
		Node* cur = _root;
		Node* parent = nullptr;
		// (1) 找到插入的位置
		while (cur)
		{
			if (key < cur->_key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (key > cur->_key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				break;
			}
		}
		// 1、2、 (子 代替 父亲的位置)

		// 大前提:如果要删除的节点,left为空
		if (cur->_left == nullptr)
		{
			// 如果要删除根!
			if (cur == _root)
			{
				_root = cur->_right;// 那就让cur的右当根
			}
			// 如果要删除的不是根!
			else
			{
				// 如果要删除的节点cur,在父亲的左边。

				// 因为是替代法,所以说要让 子 的位置代替 父亲 的位置,但是 子 的位置只有_right存在,所以说会把_right的位置放到即将要删除cur的位置。
				if (parent->_left == cur)
				{
					parent->_left = cur->_right;
				}
				else
				{
					parent->_right = cur->_right;
				}
			}

			delete cur;
		}


		// 大前提:如果要删除的节点,right为空
		else if (cur->_right == nullptr)
		{
			if (cur == _root)
			{
				_root = cur->_left;
			}

			else
			{
				// 因为是替代法,所以说要让 子 的位置代替 父亲 的位置,但是 子 的位置只有_left存在,所以说会把_left的位置放到即将要删除cur的位置。
				if (parent->_left == cur)
				{
					parent->_left = cur->_left;
				}
				else
				{
					parent->_right = cur->_left;
				}
			}
			delete cur;
		}

		// 3、要删除的cur不只有一个节点。可能有多个节点,甚至整个指子树
		// 找到要删除节点cur,左子树最大的节点,右子树最小的节点,来代替cur的位置。
		else
		{
			// 要么找cur左子树中的max,要么就找右子树中的min

			// 这里 以 RightMin为例!

			// (1)找到 RightMin (就像找 cur那样)
			Node* RightMin = cur->_right;
			Node* RightMinParent = cur; // 定义 RightMinParent 为了方便后续节点的连接。

			while (RightMin->_left)
			{
				RightMinParent = RightMin;
				RightMin = RightMin->_left;
			}
			// (2)找到了 就交换!
			swap(RightMin->_key, cur->_key);

			// (3) 交换完后 就链接!

			if (RightMinParent->_left == RightMin)
				RightMinParent->_left = cur;
			else
				RightMinParent->_right = cur;
			// 链接完成!

			delete cur;
		}

		return true;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109

递归删除:

相对于非递归,只需要修改找到了要修改的代码:找到了后不需要管cur到底左为空、右为空、还是左右都不为空

① 找要删除节点的右子树的最小节点并把它的值保存起来

② 删除右子树的最小节点

③ 把要删除的节点值替换成右子树的最小节点值

在这里插入图片描述

                else//左右都不为空,替换法删除
                {
					//找右子树最小节点
					Node* minRight = cur->_right;
					while (minRight->_left)
					{
						minRight = minRight->_left;
					}
 
					//用min保存右子树最小节点的值
					K min = minRight->_key;
 
					//递归调用自己去替换删除节点,一定会走到左为空的情况处理
					this->Erase(min);
 
					//删除完毕替换节点之后,把cur的值替换成min
					cur->_key = min;
				}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

三、二叉搜索树操作(递归)

理解了非递归操作以后, 递归操作就很简单了:

#include<iostream>
using namespace std;
 
//树的节点可以支持多种类型
template<class K>
//树节点结构
struct BSTreeNode
{
	BSTreeNode<K>* _left;//左指针
	BSTreeNode<K>* _right;//右指针
	K _key;//值
 
	//构造函数
	BSTreeNode(const K& key)
		:_left(nullptr)
		, _right(nullptr)
		, _key(key)
	{}
};
 
template<class K>
class BStree//树结构
{
	typedef BSTreeNode<K> Node;
public:
	//递归查找
	Node* FindR(const K& key)
	{
		return _FindR(_root, key);
	}
 
	//递归插入
	bool InsertR(const K& key)
	{
		return _InsertR(_root, key);
	}
 
	//递归删除
	bool EraseR(const K& key)
	{
		return _EraseR(_root, key);
	}
private:
	Node* _root;
};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45

由于_root是私有的,可以把递归子函数查找、插入、删除都定义成私有的

1.二叉搜索树的查找(递归)

private:
    //查找
	Node* _FindR(Node* root, const K& key)
	{
		if (root == nullptr)//没找到
		{
			return nullptr;
		}
 
		if (key < root->_key)//到左子树去找
		{
			FindR(root->_left, key);
		}
		else if (key > root->_key)//到右子树去找
		{
			FindR(root->_right, key);
		}
		else//找到了
		{
			return root;
		}
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

2.二叉搜索树的插入(递归)

	//插入 加了&,root是_root的别名,修改root就直接修改到上一层调用,不用找父亲
	bool _InsertR(Node*& root, const K& key)
	{
		if (root == nullptr)//找到位置了
		{
			root = new Node(key);
			return true;
		}
		if (key < root->_key)//到左子树去找位置
		{
			_InsertR(root->_left, key);
		}
		else if (key > root->_key)//到右子树去找位置
		{
			_InsertR(root->_right, key);
		}
		else//已存在,无需插入
		{
			return false;
		}
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

3.二叉搜索树的删除(递归)

递归删除:和二叉树的删除(非递归)一样,找到后的删除也有两种方式,递归和非递归

找到后的非递归删除:

    //插入 加了&,root是_root的别名,修改root就直接修改到上一层调用,不用找父亲	
    bool _EraseR(Node*& root, const K& key)
	{
		if (root == nullptr)//没找到
		{
			return false;
		}
		if (key < root->_key)//到左子树去找
		{
			_EraseR(root->_left, key);
		}
		else if (key > root->_key)//到右子树去找
		{
			_EraseR(root->_right, key);
		}
		else
		{
			//找到了,root就是要删除的节点
			if (root->_left == nullptr)//root左为空
			{
				Node* del = root;
				root = root->_right;
				delete del;
			}
			else if (root->_right == nullptr)//root右为空
			{
				Node* del = root;
				root = root->_left;
				delete del;
			}
			else//root左右都不为空
			{
				//找到右子树最左节点替换
				Node* minParent = root;
				Node* minRight = root->_right;
 
				while (minRight->_left)
				{
					minParent = minRight;
					minRight = minRight->_left;
				}
 
				//保存替换节点的值
				cur->_key = minRight->_key;
 
				//链接
				if (minParent->_left == minRight)
				{
					minParent->_left = minRight->_right;
				}
				else
				{
					minParent->_right = minRight->_right;
				}
 
				//删除
				delete minRight;
			}
			return true;
		}
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

找到后的递归删除:

			else//root左右都不为空
			{				
                //找右子树最左节点
				Node* minRight = root->_right;
				while (minRight->_left)
				{
					minRight = minRight->_left;
				}
 
				//保存右子树最左节点的值
				K min = minRight->_key;
 
				//使用递归方法删除右子树最左节点
				_Erase(root->_right, min);
			}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

四、二叉搜索树的默认成员函数

现在还剩下二叉搜索树的构造、拷贝构造、赋值运算符重载、析构函数。

1.构造

public:
	//构造函数需要将根初始化为空就行了
	BSTree()
		:_root(nullptr)
	{}
  • 1
  • 2
  • 3
  • 4
  • 5

2.拷贝构造

拷贝构造利用递归调用子函数不断拷贝节点:

	//拷贝构造
	BSTree(const BSTree<K>& t)
	{
		_root = t.copy(t._root);
	}
  • 1
  • 2
  • 3
  • 4
  • 5

在子函数处:

	Node* _copy(Node* root)
	{
		if (root == nullptr)//如果根为空,直接返回
		{
			return;
		}
 
		Node* copyNode = new Node(root->_key);//创建根节点
		copyNode->_left = _copy(root->_left);//递归拷贝左子树节点
		copyNode->_right = _copy(root->_right);//递归拷贝右子树节点
		
		return copyNode;//返回根
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

3.赋值运算符重载

借助拷贝构造用现代写法写:

	//赋值运算符重载(现代写法)
	BSTree& operator=(const BSTree<K>& t)
	{
		swap(_root,t._root);
		return *this;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

4.析构

递归调用子函数去析构

	//析构
	~BSTree()
	{
		_Destroy(_root);
		_root = nullptr;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在子函数处:

	_Destroy(root)
	{
		if (root == nullptr)
		{
			return;
		}
		_Destroy(root->_left);
		_Destroy(root->_right);
		delete root;
	}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

五、K模型和KV模型搜索树

1.K模型搜索树

K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
1、以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
2、在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。

2.KV模型搜索树

KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:

1、比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;
2、再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出
现次数就是<word, count>就构成一种键值对。

改造二叉搜索树为KV结构的代码

#pragma once
#include<iostream>
#include<string>
using namespace std;

namespace key_value
{
	template<class K, class V>
	struct BSTreeNode
	{
		BSTreeNode<K, V>* _left;
		BSTreeNode<K, V>* _right;
		K _key;
		V _value;

		// pair<K, V> _kv;

		BSTreeNode(const K& key, const V& value)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
			, _value(value)
		{}
	};

	template<class K, class V>
	class BSTree
	{
		typedef BSTreeNode<K, V> Node;
	public:
		// logN
		bool Insert(const K& key, const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key, value);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key, value);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return true;
		}

		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return cur;
				}
			}

			return cur;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					// 删除
					// 左为空,父亲指向我的右
					if (cur->_left == nullptr)
					{
						//if(parent == nullptr)
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (cur == parent->_left)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}

						delete cur;
					}
					else if (cur->_right == nullptr)
					{
						//if(parent == nullptr)
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 右为空,父亲指向我的左
							if (cur == parent->_left)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}

						delete cur;
					}
					else
					{
						// 左右都不为空,替换法删除
						// 
						// 查找右子树的最左节点替代删除
						Node* rightMinParent = cur;
						Node* rightMin = cur->_right;
						while (rightMin->_left)
						{
							rightMinParent = rightMin;
							rightMin = rightMin->_left;
						}

						swap(cur->_key, rightMin->_key);

						if (rightMinParent->_left == rightMin)
							rightMinParent->_left = rightMin->_right;
						else
							rightMinParent->_right = rightMin->_right;

						delete rightMin;
					}

					return true;
				}
			}

			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}
	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << ":" << root->_value << endl;
			_InOrder(root->_right);
		}
	private:
		Node* _root = nullptr;
	};
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207

六、二叉搜索树性能分析

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


好了,今天的分享就到这里了
如果对你有帮助,记得点赞

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/688425
推荐阅读
相关标签