赞
踩
读取文件中用双亲表达的树,打印出来;然后转化成链表的孩子兄弟的二叉树,打印;然后再转化成树
练习文本TreeByParent.txt附上:
0 10
R 0
A 1
B 1
C 1
D 2
E 2
F 4
G 7
H 7
K 7
DS init code 2024/4/27 by 废柴
#include<stdio.h> #include<stdlib.h> #include<memory.h> const char* infilename = "D:\\c practice data\\TreeByParent.txt"; //定义双亲表示的树 typedef struct { char ch; int parent; }PTNode; //定义孩子兄弟表示法的二叉树 typedef struct BTNode{ char ch; BTNode* fchild; BTNode* nsbl; }BTNode; //1.从文件中读取文件创建树 PTNode*createPTree(const char* infilename, int* n); //1.1打印树 void printPTree(PTNode nodes[], int n); //2.转化为孩子兄弟的二叉树 BTNode* convertToB(PTNode nodes[],int n); //3.打印二叉树 void printBTree(BTNode* root,int n); //4.将孩子兄弟二叉树重新变成树 PTNode* recover(BTNode* root, int n); int main() { int n = 0; PTNode*nodes= createPTree(infilename, &n); BTNode* root = convertToB(nodes, n); printf("convert to Binary Tree:\n"); printBTree(root,n); PTNode* tree2 = recover(root, n); free(nodes); free(root); free(tree2); return 0; } //1.从文件中读取文件创建树 PTNode* createPTree(const char* infilename, int* n) { FILE* fp = fopen(infilename, "r"); if (fp == NULL) { printf("file open error\n"); return NULL; } char ch = 0; fscanf(fp, "%c %d\n", &ch, n); PTNode* nodes = (PTNode*)malloc(sizeof(PTNode) * (*n)); memset(nodes, 0, sizeof(PTNode) * (*n)); for (int i = 0; i < (*n); i++) { char ch; int parent; fscanf(fp, "%c %d\n", &ch, &parent); nodes[i].ch = ch; nodes[i].parent = parent-1; } fclose(fp); printPTree(nodes, (*n)); return nodes; } //1.1打印树 void printPTree(PTNode*nodes, int n) { for (int i = 0; i < n; i++) { printf("%d value:%c parent:%d\n",i, nodes[i].ch, nodes[i].parent); } return; } //2.转化为孩子兄弟的二叉树 BTNode* convertToB(PTNode nodes[], int n) { BTNode* tree = (BTNode*)malloc(sizeof(BTNode) * n); memset(tree, 0, sizeof(BTNode) * n); //创建结点并建立父子关系 for (int i = 0; i < n; i++) { BTNode* temp = &tree[i]; temp->ch = nodes[i].ch; //判断是否是根结点 if (nodes[i].parent != -1) { BTNode* parent = &tree[nodes[i].parent]; //存储当前结点的parent //继续判断是否是fchild if (parent->fchild == NULL) { parent->fchild = temp; } else { //此时不是第一个孩子,那就要循环找到最后一个哥哥 BTNode* sibling = parent->fchild; while (sibling->nsbl != NULL) { sibling = sibling->nsbl; }sibling->nsbl = temp; } } } //找到根节点返回 for (int i = 0; i < n; i++) { if (nodes[i].parent == -1) { return &tree[i]; } } return NULL; } //3.打印二叉树 void printBTree(BTNode* T ,int n) { if (T == NULL) { printf("空\n"); return; } for (int i = 0; i < n; i++) { printf("%d value:%c ", i, T[i].ch); if (T[i].fchild != NULL) { printf("fchild->%c ", T[i].fchild->ch); } else printf("fchild->NULL "); if (T[i].nsbl != NULL) { printf("nsbl->%c\n", T[i].nsbl->ch); } else printf("nsbl->NULL\n"); } return; } //4.将孩子兄弟二叉树重新变成树 PTNode* recover(BTNode* root, int n) { PTNode* tree2 = (PTNode*)malloc(sizeof(PTNode) * n); memset(tree2, 0, sizeof(PTNode) * n); for (int i = 0; i < n; i++) { tree2[i].ch = root[i].ch; } tree2[0].parent = -1; for (int i = 0; i < n; i++) { if (root[i].fchild != NULL){ for (int j = i + 1; j < n; j++) { if (root[j].ch == root[i].fchild->ch) { tree2[j].parent = i; } if (root[j].nsbl != NULL) { for (int q = j + 1; q < n; q++) { if (root[j].nsbl->ch == root[q].ch) { tree2[q].parent = tree2[j].parent; } } } } } } printPTree(tree2, n); return tree2; }
调试结果
1.代码并没有实现链表存储形式的二叉树,使用的是顺序存储结构
尝试过的链式存储结构需要依靠同种结构的顺序存储数组来实现,打印也不方便
2.对二叉树重新转化树的方式过于冗长,时间复杂度较高,需要改进
从树转为二叉树,其逻辑思维是:
(1)是否是根结点
(2)如果不是根结点,那么说明有双亲
(3)找到双亲,双亲是否有fchild
(4)如果没有第一个孩子,当前结点是parent的fchild
(5)如果有第一个孩子,那当前结点是fchild的第几个nsbl
(6)想要找到当前结点的上一个兄弟,必须用while()找到parent已有的最后一个子结点
编程小白,恳请指正(doge)
留个坑:用递归做二叉树转树
哈夫曼编码
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。