当前位置:   article > 正文

超维空间S2无人机使用说明书——51、基础版——使用yolov8进行目标跟踪_无人机yolo识别

无人机yolo识别

引言:为了提高yolo识别的质量,提高了yolo的版本,改用yolov8进行物体识别,同时系统兼容了低版本的yolo,包括基于C++的yolov3和yolov4,以及yolov7。

简介,为了提高识别速度,系统采用了GPU进行加速,在使用7W功率的情况,大概可以稳定在20FPS,满功率情况下可以适当提高。

硬件:D435摄像头,Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic, yolov8

注:目标跟随是在木根识别的基础上进行,因此本小节和yolov8识别小节类似,只是在此基础上添加了跟随控制程序

步骤一: 启动摄像头,获取摄像头发布的图像话题

roslaunch realsense2_camera rs_camera.launch  
  • 1

请添加图片描述

没有出现红色报错,出现如下界面,表明摄像头启动成功

请添加图片描述

步骤二:启动yolov8识别节点

roslaunch yolov8_ros yolo_v8.launch 
  • 1

launch文件如下,参数use_cpu设置为false,因为实际使用GPU加速,不是CPU跑,另外参数pub_topic是yolov8识别到目标后发布出来的物体在镜头中的位置,程序作了修改,直接给出目标物的中心位置,其中参数image_topic是订阅的节点话题,一定要与摄像头发布的实际话题名称对应上。

<?xml version="1.0" encoding="utf-8"?>
<launch>

  <!-- Load Parameter -->
  
  <param name="use_cpu"           value="false" />

  <!-- Start yolov8 and ros wrapper -->
  <node pkg="yolov8_ros" type="yolo_v8.py" name="yolov8_ros" output="screen" >
    <param name="weight_path"       value="$(find yolov8_ros)/weights/yolov8n.pt"/>
    <param name="image_topic"       value="/camera/color/image_raw" />
    <param name="pub_topic"         value="/object_position" />
    <param name="camera_frame"      value="camera_color_frame"/>
    <param name="visualize"         value="false"/>
    <param name="conf"              value="0.3" />
  </node>
</launch>

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

请添加图片描述

出现如下界面表示yolov8启动成功

请添加图片描述

步骤三:打开rqt工具,查看识别效果

注:步骤三不是必须的,可以跳过直接进行步骤四

rqt_image_view 
  • 1

请添加图片描述

等待出现如下界面后,选择yolov8/detection_image查看yolov8识别效果

请添加图片描述

步骤四:启动跟随控制程序

(1)、终端启动程序

roslaunch follow_yolov8 follow_yolov8.launch  
  • 1

请添加图片描述

(2)、launch文件详解

<?xml version="1.0" encoding="utf-8"?>
<launch>
  <param name="target_object_id" value="chair" />
  <node pkg="follow_yolov8" type="follow_yolov8" name="follow_yolov8" output="screen" />
</launch>
  • 1
  • 2
  • 3
  • 4
  • 5

launch文件中加载的参数target_object_id是指定跟随的目标名称,无人机在识别到这个目标以后,会通过全向的速度控制保持目标始终在无人机的视野中。launch文件中指定参数chair,因此在识别chair以后,可以看到终端会打印日志已经识别到指定的目标物

请添加图片描述

请添加图片描述

步骤五:控制部分代码

此处抛砖引玉,仅仅做最简单的速度控制,读者可以根据自己的理解,添加类似PID等控制跟随的算法,本文不再展开

#include <ros/ros.h>
#include <std_msgs/Bool.h>
#include <geometry_msgs/PoseStamped.h>
#include <geometry_msgs/TwistStamped.h>
#include <mavros_msgs/CommandBool.h>
#include <mavros_msgs/SetMode.h>
#include <mavros_msgs/State.h>
#include <mavros_msgs/PositionTarget.h>
#include <cmath>
#include <tf/transform_listener.h>
#include <nav_msgs/Odometry.h>
#include <mavros_msgs/CommandLong.h>   
#include <yolov8_ros_msgs/BoundingBoxes.h>
#include <string>

#define MAX_ERROR 50
#define VEL_SET   0.15
#define ALTITUDE  0.40

using namespace std;

yolov8_ros_msgs::BoundingBoxes object_pos;
nav_msgs::Odometry local_pos;
mavros_msgs::State current_state;  
mavros_msgs::PositionTarget setpoint_raw;
 
//检测到的物体坐标值
double position_detec_x = 0;
double position_detec_y = 0;
std::string Class = "no_object";

std::string target_object_id = "eight";

void state_cb(const mavros_msgs::State::ConstPtr& msg);

void local_pos_cb(const nav_msgs::Odometry::ConstPtr& msg);

void object_pos_cb(const yolov8_ros_msgs::BoundingBoxes::ConstPtr& msg);

int main(int argc, char **argv)
{
	//防止中文输出乱码
	setlocale(LC_ALL, "");

    //初始化节点,名称为visual_throw
    ros::init(argc, argv, "follow_yolov8");
    
    //创建句柄
    ros::NodeHandle nh;
	 
	//订阅无人机状态话题
	ros::Subscriber state_sub     = nh.subscribe<mavros_msgs::State>("mavros/state", 100, state_cb);
		
	//订阅无人机实时位置信息
    ros::Subscriber local_pos_sub = nh.subscribe<nav_msgs::Odometry>("/mavros/local_position/odom", 100, local_pos_cb);
    
     //订阅实时位置信息
    ros::Subscriber object_pos_sub = nh.subscribe<yolov8_ros_msgs::BoundingBoxes>("object_position", 100, object_pos_cb);
		
	//发布无人机位置控制话题
	ros::Publisher  local_pos_pub = nh.advertise<geometry_msgs::PoseStamped>("mavros/setpoint_position/local", 100);
		
	//发布无人机多维控制话题
    ros::Publisher  mavros_setpoint_pos_pub = nh.advertise<mavros_msgs::PositionTarget>("/mavros/setpoint_raw/local", 100);   
		               
	//请求无人机解锁服务        
	ros::ServiceClient arming_client = nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming");
		
	//请求无人机设置飞行模式,本代码请求进入offboard
	ros::ServiceClient set_mode_client = nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode");

	//请求控制舵机客户端
    ros::ServiceClient ctrl_pwm_client = nh.serviceClient<mavros_msgs::CommandLong>("mavros/cmd/command");

    //循环频率
    ros::Rate rate(20.0); 
    
    

    ros::param::get("target_object_id", target_object_id);
   
    //等待连接到PX4无人机
    while(ros::ok() && current_state.connected)
    {
        ros::spinOnce();
        rate.sleep();
    }

    setpoint_raw.type_mask = 1 + 2 + /*4 + 8 + 16 + 32*/ + 64 + 128 + 256 + 512 + 1024 + 2048;
	setpoint_raw.coordinate_frame = 8;
	setpoint_raw.position.x = 0;
	setpoint_raw.position.y = 0;
	setpoint_raw.position.z = 0 + ALTITUDE;
	mavros_setpoint_pos_pub.publish(setpoint_raw);
 
    for(int i = 100; ros::ok() && i > 0; --i)
    {
		mavros_setpoint_pos_pub.publish(setpoint_raw);
        ros::spinOnce();
        rate.sleep();
    }
    
    //请求offboard模式变量
    mavros_msgs::SetMode offb_set_mode;
    offb_set_mode.request.custom_mode = "OFFBOARD";
 
    //请求解锁变量
    mavros_msgs::CommandBool arm_cmd;
    arm_cmd.request.value = true;

    ros::Time last_request = ros::Time::now();
    //请求进入offboard模式并且解锁无人机,15秒后退出,防止重复请求       
   
    while(ros::ok())
    {
    	//请求进入OFFBOARD模式
        if( current_state.mode != "OFFBOARD" && (ros::Time::now() - last_request > ros::Duration(5.0)))
        {
            if( set_mode_client.call(offb_set_mode) && offb_set_mode.response.mode_sent)
            {
                ROS_INFO("Offboard enabled");
            }
           	last_request = ros::Time::now();
       	}
        else 
		{
			//请求解锁
			if( !current_state.armed && (ros::Time::now() - last_request > ros::Duration(5.0)))
			{
		        if( arming_client.call(arm_cmd) && arm_cmd.response.success)
		       	{
		            ROS_INFO("Vehicle armed");
		        }
		        	last_request = ros::Time::now();
			}
		}
	    if(ros::Time::now() - last_request > ros::Duration(5.0))
	    	break;
		mavros_setpoint_pos_pub.publish(setpoint_raw);
        ros::spinOnce();
        rate.sleep();
    } 
	
    while(ros::ok())
    {      
    
   		//此处表示识别到launch文件中指定的目标
		//if(object_pos.bounding_boxes[0].Class == "chair")
		if(Class == target_object_id)
        {
        	ROS_INFO("识别到目标,采用速度控制进行跟随");
			//摄像头向下安装,因此摄像头的Z对应无人机的X前后方向,Y对应Y左右方向
			//无人机左右移动速度控制
			if(position_detec_x-320 >= MAX_ERROR)
			{
				setpoint_raw.velocity.y =  -VEL_SET;
			}					
			else if(position_detec_x-320 <= -MAX_ERROR)
			{
				setpoint_raw.velocity.y =  VEL_SET;
			}	
			else
			{
				setpoint_raw.velocity.y =  0;
			}
			//无人机前后移动速度控制
			if(position_detec_y-240 >= MAX_ERROR)
			{
				setpoint_raw.velocity.x =  -VEL_SET;
			}					
			else if(position_detec_y-240 <= -MAX_ERROR)
			{
				setpoint_raw.velocity.x =  VEL_SET;
			}	
			else
			{
				setpoint_raw.velocity.x =  0;
			}
				
		}
		else
		{
			setpoint_raw.velocity.x =  0;
			setpoint_raw.velocity.y =  0;
		}
		setpoint_raw.type_mask = 1 + 2 +/* 4 + 8 + 16 + 32*/ + 64 + 128 + 256 + 512 /*+ 1024 + 2048*/;
		setpoint_raw.coordinate_frame = 8;
		setpoint_raw.velocity.x = 0;
		setpoint_raw.position.z = 0 + ALTITUDE;
		setpoint_raw.yaw        = 0;
	    mavros_setpoint_pos_pub.publish(setpoint_raw);
		ros::spinOnce();
		rate.sleep();
	}
    return 0;
}

void state_cb(const mavros_msgs::State::ConstPtr& msg)
{
    current_state = *msg;
}

void local_pos_cb(const nav_msgs::Odometry::ConstPtr& msg)
{
    local_pos = *msg;
}

void object_pos_cb(const yolov8_ros_msgs::BoundingBoxes::ConstPtr& msg)
{
	object_pos = *msg;
    position_detec_x = object_pos.bounding_boxes[0].xmin;
    position_detec_y = object_pos.bounding_boxes[0].ymin;
    Class =            object_pos.bounding_boxes[0].Class;
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215

从图中可以看出,在10W功率的情况下,大概在30帧的效果,识别准确度比较高

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号