当前位置:   article > 正文

AI分布式训练:DDP (数据并行)技术详解与实战_ai分布式并行模式

ai分布式并行模式

编者按: 如今传统的单机单卡模式已经无法满足超大模型进行训练的要求,如何更好地、更轻松地利用多个 GPU 资源进行模型训练成为了人工智能领域的热门话题。

我们今天为大家带来的这篇文章详细介绍了一种名为 DDP(Distributed Data Parallel)的并行训练技术,作者认为这项技术既高效又易于实现。

文章要点如下:

(1)DDP 的核心思想是将模型和数据复制到多个 GPU 上并行训练,然后汇总平均梯度。

(2)DDP 比传统的 DP 模式更加高效,可以轻松扩展到多节点,同时也介绍了 DDP 的局限性。

(3)DDP 的 Python 实现非常简洁,主要分为进程初始化、设置 Distributed DataLoader(分布式数据加载器)和模型训练与测试三步。

(4)文中还解析了 DDP 中 Node、Master Node、Local Rank、Global Rank 等关键术语的具体含义。

(5)提供了从单 GPU 到单节点多 GPU 再到多节点场景的 DDP 应用案例源代码。

DDP 要求将整个模型加载到一个GPU上,这使得大模型的训练需要使用额外复杂的设置进行模型分片。期待未来有更多简单、高效、易用,还能满足大模型场景的模型训练并行技术出现!

作者 | François Porcher

编译 | 岳扬

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/72935
推荐阅读
相关标签