赞
踩
1.common.py添加相应条件
2.yolo.py添加判断条件
3.创建属于自己的注意力yaml文件
第一步:
在common.py中先添加你想添加的注意力模块
- class h_sigmoid(nn.Module):
- def __init__(self, inplace=True):
- super(h_sigmoid, self).__init__()
- self.relu = nn.ReLU6(inplace=inplace)
-
- def forward(self, x):
- return self.relu(x + 3) / 6
-
-
- class h_swish(nn.Module):
- def __init__(self, inplace=True):
- super(h_swish, self).__init__()
- self.sigmoid = h_sigmoid(inplace=inplace)
-
- def forward(self, x):
- return x * self.sigmoid(x)
-
-
- class CoordAtt(nn.Module):
- def __init__(self, inp, oup, reduction=32):
- super(CoordAtt, self).__init__()
- self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
- self.pool_w = nn.AdaptiveAvgPool2d((1, None))
-
- mip = max(8, inp // reduction)
-
- self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
- self.bn1 = nn.BatchNorm2d(mip)
- self.act = h_swish()
-
- self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
- self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
-
- def forward(self, x):
- identity = x
-
- n, c, h, w = x.size()
- x_h = self.pool_h(x)
- x_w = self.pool_w(x).permute(0, 1, 3, 2)
-
- y = torch.cat([x_h, x_w], dim=2)
- y = self.conv1(y)
- y = self.bn1(y)
- y = self.act(y)
-
- x_h, x_w = torch.split(y, [h, w], dim=2)
- x_w = x_w.permute(0, 1, 3, 2)
-
- a_h = self.conv_h(x_h).sigmoid()
- a_w = self.conv_w(x_w).sigmoid()
-
- out = identity * a_w * a_h
-
- return out
-
-
- class SELayer(nn.Module):
- def __init__(self, c1, r=16):
- super(SELayer, self).__init__()
- self.avgpool = nn.AdaptiveAvgPool2d(1)
- self.l1 = nn.Linear(c1, c1 // r, bias=False)
- self.relu = nn.ReLU(inplace=True)
- self.l2 = nn.Linear(c1 // r, c1, bias=False)
- self.sig = nn.Sigmoid()
-
- def forward(self, x):
- b, c, _, _ = x.size()
- y = self.avgpool(x).view(b, c)
- y = self.l1(y)
- y = self.relu(y)
- y = self.l2(y)
- y = self.sig(y)
- y = y.view(b, c, 1, 1)
- return x * y.expand_as(x)
-
-
- class eca_layer(nn.Module):
- """Constructs a ECA module.
- Args:
- channel: Number of channels of the input feature map
- k_size: Adaptive selection of kernel size
- """
-
- def __init__(self, channel, k_size=3):
- super(eca_layer, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
- self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
- self.sigmoid = nn.Sigmoid()
-
- def forward(self, x):
- # feature descriptor on the global spatial information
- y = self.avg_pool(x)
-
- # Two different branches of ECA module
- y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
-
- # Multi-scale information fusion
- y = self.sigmoid(y)
- x = x * y.expand_as(x)
-
- return x * y.expand_as(x)
-
-
- class ChannelAttention(nn.Module):
- def __init__(self, in_planes, ratio=16):
- super(ChannelAttention, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
- self.max_pool = nn.AdaptiveMaxPool2d(1)
-
- self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
- self.relu = nn.ReLU()
- self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
- # 写法二,亦可使用顺序容器
- # self.sharedMLP = nn.Sequential(
- # nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False), nn.ReLU(),
- # nn.Conv2d(in_planes // rotio, in_planes, 1, bias=False))
-
- self.sigmoid = nn.Sigmoid()
-
- def forward(self, x):
- avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))
- max_out = self.f2(self.relu(self.f1(self.max_pool(x))))
- out = self.sigmoid(avg_out + max_out)
- return out
-
-
- class SpatialAttention(nn.Module):
- def __init__(self, kernel_size=7):
- super(SpatialAttention, self).__init__()
-
- assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
- padding = 3 if kernel_size == 7 else 1
-
- self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
- self.sigmoid = nn.Sigmoid()
-
- def forward(self, x):
- avg_out = torch.mean(x, dim=1, keepdim=True)
- max_out, _ = torch.max(x, dim=1, keepdim=True)
- x = torch.cat([avg_out, max_out], dim=1)
- x = self.conv(x)
- return self.sigmoid(x)
-
-
- class CBAMC3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super(CBAMC3, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1)
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
- self.channel_attention = ChannelAttention(c2, 16)
- self.spatial_attention = SpatialAttention(7)
-
- # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
-
- def forward(self, x):
- out = self.channel_attention(x) * x
- print('outchannels:{}'.format(out.shape))
- out = self.spatial_attention(out) * out
- return out
-
在def parse_model(d, ch):
函数下
在下面代码中增加你想添加的注意力名称
原始
- if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
- BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
- c1, c2 = ch[f], args[0]
- if c2 != no: # if not output
- c2 = make_divisible(c2 * gw, 8)
-
- args = [c1, c2, *args[1:]]
- if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
- args.insert(2, n) # number of repeats
- n = 1
添加后
- if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
- BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, CoordAtt]:
- c1, c2 = ch[f], args[0]
- if c2 != no: # if not output
- c2 = make_divisible(c2 * gw, 8)
-
- args = [c1, c2, *args[1:]]
- if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
- args.insert(2, n) # number of repeats
- n = 1
这里我使用的是yolov5s.yaml为模板。注意力机制放置的位置并不是唯一的,需要根据你的数据集来摸索测试,可能别人放这儿涨点了,但是你放这儿没有效果,俗称“玄学”。
CA.yaml代码如下(示例):
- # YOLOv5 本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/757493推荐阅读
相关标签
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。