当前位置:   article > 正文

LeetCode 树专题(一) 十二道

leetcode 树专题

1、minimum-depth-of-binary-tree
【题目】:Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node.
【解答】:

public class Solution {
    public int run(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int res = 0;
        if(root.left != null && root.right != null) {
            res = Math.min(run(root.left), run(root.right)) +1;
        } else if (root.left == null && root.right != null) {
            res = run(root.right) + 1;
        } else if (root.left != null && root.right == null) {
            res = run(root.left) +1;
        } else {
            res = 1;
        }
        return res;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

2、binary-tree-postorder-traversal
【题目】:Given a binary tree, return the postorder traversal of its nodes’ values.
For example:
Given binary tree{1,#,2,3},
1
\
2
/
3

return[3,2,1].
Note: Recursive solution is trivial, could you do it iteratively?

【递归解法】:

import java.util.ArrayList;
public class Solution {
    public ArrayList<Integer> postorderTraversal(TreeNode root) {
        //递归版本
        ArrayList<Integer> res = new ArrayList<>();
       TraversalHelper(root, res);
        return res;

    }

    public void TraversalHelper(TreeNode root, ArrayList<Integer> res) {
        if (root == null) {
            return;
        }
        TraversalHelper(root.left, res);
        TraversalHelper(root.right, res);
        res.add(root.val);

    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

【非递归解法】:先序遍历: 中 左 右
在先序遍历非递归解法的基础上改成 中 右 左
然后reverse逆序编程 左 右 中, 变成了后序遍历的顺序了。

import java.util.Collections;
import java.util.ArrayList;
import java.util.Stack;
public class Solution {
    public ArrayList<Integer> postorderTraversal(TreeNode root) {

        ArrayList<Integer> res = new ArrayList<>();
        if (root == null) {
            return res;
        }

        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (stack.size() != 0) {
            TreeNode node = stack.pop();
            res.add(node.val);
            if (node.left != null) {
                stack.push(node.left);
            }
            if (node.right != null) {
                stack.push(node.right);
            }
        }
        Collections.reverse(res);
        return res;


    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

3、binary-tree-preorder-traversal
【题目】ven a binary tree, return the preorder traversal of its nodes’ values.
For example:
Given binary tree{1,#,2,3},
1
\
2
/
3

return[1,2,3].
Note: Recursive solution is trivial, could you do it iteratively?
【解答】

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
import java.util.ArrayList;
import java.util.Stack;
public class Solution {
    public ArrayList<Integer> preorderTraversal(TreeNode root) {
         ArrayList<Integer> res = new ArrayList<>();
        if (root == null){
            return res;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (stack.size() != 0){
            TreeNode cur = stack.pop();
            res.add(cur.val);
            if (cur.right != null) stack.push(cur.right);
            if (cur.left != null) stack.push(cur.left);
        }
        return res;
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

4、sum-root-to-leaf-numbers

【题目】Given a binary tree containing digits from0-9only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path1->2->3which represents the number123.
Find the total sum of all root-to-leaf numbers.
For example,
    1
   / \
  2   3

The root-to-leaf path1->2represents the number12.
The root-to-leaf path1->3represents the number13.
Return the sum = 12 + 13 =25.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

【解答】

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int sumNumbers(TreeNode root) {
        if (root == null){
            return 0;
        }
        int[] res = new int[1];
        return generateNum(root, res, 0);
    }

    public int generateNum(TreeNode root, int[] res, int num){
        num = num * 10 + root.val;
        if (root.left != null && root.right != null){
            return generateNum(root.left, res, num) + generateNum(root.right, res, num);
        }
        else if (root.left == null && root.right != null){
            return generateNum(root.right, res, num);
        }
        else if (root.left != null && root.right == null){
            return generateNum(root.left, res, num);
        }
        else {
            return res[0] + num;
        }

    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

【点评】就是先序遍历,遍历到根节点再遍历左右子树时传入一个值,即高位的数值

5、 binary-tree-maximum-path-sum

【题目】Given a binary tree, find the maximum path sum.
The path may start and end at any node in the tree.
For example:
Given the below binary tree,
       1
      / \
     2   3

Return6.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

【解答】

/**
 * Definition for binary tree
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public int maxPathSum(TreeNode root) {
        int left = singleTreePathSum(root.left);
        int right = singleTreePathSum(root.right);
        int res = root.val;
        if (left > 0) {
            res += left;
        }
        if (right >0) {
            res += right;
        }
        if (root.left != null) {
            int subLeft = maxPathSum(root.left);
            res = res > subLeft ? res : subLeft;
        }
        if (root.right != null) {
            int subRight = maxPathSum(root.right);
            res = res > subRight ? res : subRight;
        }
        return res;
    }

    //record[0]root节点左边最深路径长度,rocord[1]root节点右边
    public int singleTreePathSum(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int res = root.val;
        int left = 0, right = 0;
        if (root.left != null) {
            left = singleTreePathSum(root.left);
        }
        if (root.right != null) {
            right = singleTreePathSum(root.right);
        }
        int max = right > left ?right:left;
        if (max >0) {
            res += max;
        }
        return res;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51

6、populating-next-right-pointers-in-each-node-ii

【题目】
Follow up for problem "Populating Next Right Pointers in Each Node".
What if the given tree could be any binary tree? Would your previous solution still work?
Note:
You may only use constant extra space.

For example,
Given the following binary tree,
         1
       /  \
      2    3
     / \    \
    4   5    7

After calling your function, the tree should look like:
         1 -> NULL
       /  \
      2 -> 3 -> NULL
     / \    \
    4-> 5 -> 7 -> NULL
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

【解答】

import java.util.LinkedList;
import java.util.Queue;

/**
 * Created by Administrator on 2018/3/21 0021.
 */
class TreeLinkNode {
    int val;
    TreeLinkNode left, right, next;
    TreeLinkNode(int x) {
        val = x;
    }
}
public class Solution {
    public void connect(TreeLinkNode root) {
        if (root == null) {
            return;
        }
        Queue<TreeLinkNode> queue = new LinkedList<>();
        queue.add(root);
        TreeLinkNode lastNode = root;
        TreeLinkNode levelLastNode = root;
        while (queue.size() != 0) {
            TreeLinkNode node = queue.poll();
            if (node.left != null) {
                queue.add(node.left);
                lastNode = node.left;
            }
            if (node.right != null) {
                queue.add(node.right);
                lastNode = node.right;
            }
            if (node == levelLastNode) {
                node.next = null;
                levelLastNode = lastNode;
            } else {
                TreeLinkNode nextNode = queue.peek();
                node.next = nextNode;
            }
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

【点评】有点像层序遍历,用了队列,但是每到一层结尾都要设置个levelLastNode节点提醒

7、第七题是第六题的一般情况
代码完全一样的。

8、path-sum-ii

Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
For example:
Given the below binary tree andsum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \    / \
        7    2  5   1
return
[
   [5,4,11,2],
   [5,8,4,5]
]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
import java.util.ArrayList;
public class Solution {
    public ArrayList<ArrayList<Integer>> pathSum(TreeNode root, int sum) {
        ArrayList<Integer> tmp = new ArrayList<>();
        ArrayList<ArrayList<Integer>> res = new ArrayList<>();
        if(root == null) {
            return res;
        }
        print(root, tmp, sum , res);
        return res;

    }
    public static void print(TreeNode root, ArrayList<Integer> tmp, int num , ArrayList<ArrayList<Integer>> res) {
        tmp.add(root.val);
        if (root.left == null && root.right == null && num - root.val == 0) {
            res.add(new ArrayList<>(tmp)); //这里很关键,要将tmp复制一份,如果直接将tmp add入res,在后面退栈是tmp.remove()时候会直接在res中删除tmp最后一个值
        }
        if (root.left != null) {
            print(root.left, tmp, num - root.val, res);
        }
        if (root.right != null) {
            print(root.right, tmp, num - root.val, res);
        }
        tmp.remove(tmp.size() -1);
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

【点评】要将tmp复制一份,如果直接将tmp add入res,在后面退栈是tmp.remove()时候会直接在res中删除tmp最后一个值。不然root.val = 1, sum =1 的时候输出[[]],正确输出应该是[[1]]

9、path_sum

【题目】Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:
Given the below binary tree andsum = 22,
              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1
return true, as there exist a root-to-leaf path5->4->11->2which sum is 22.
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
public class Main {
    public static void main(String[] args) {

    }
    public boolean hasPathSum(TreeNode root, int sum) {
        if (root == null) {
            return false;
        }
        if (root.left == null && root.right == null && root.val == sum) {
            return true;
        }
        if (hasPathSum(root.left, sum - root.val)) {
            return true;
        }
        if (hasPathSum(root.right , sum - root.val)) {
            return true;
        }
        return false;
    }
}

class TreeNode{
    int val;
    TreeNode left;
    TreeNode right;
    public TreeNode(int x) {
        val = x;
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

10、balanced-binary-tree
【题目】Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
【点评】考虑用后序遍历,先返回左子树和右子树是不是二叉平衡树,是的话返回左子树和右子树的最大高度,比较,确定根节点是不是平衡二叉树。递归调用。
【注意】 return (lnum > rnum ? lnum : rnum) + 1;此处返回的是左子树和左子树深度的较大值再加一。第一次写的时候忘记加1了。

public class Solution {
    public boolean flag = true;
    public boolean isBalanced(TreeNode root) {
        helper(root);
        if (flag) {
            return true;
        } else {
            return false;
        }
    }

    public int helper(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int lnum = 0, rnum = 0;
        if (flag) {
            lnum = helper(root.left);
        } 
        if (flag) {
            rnum = helper(root.right);
        }
        if (Math.abs(lnum - rnum) <= 1) {
            return (lnum > rnum ? lnum : rnum) + 1;
        } else {
            flag = false;
            return 0;
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

11、binary-tree-level-order-traversal-ii

题目描述
Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).
For example:
Given binary tree{3,9,20,#,#,15,7},
    3
   / \
  9  20
    /  \
   15   7

return its bottom-up level order traversal as:
[
  [15,7]
  [9,20],
  [3],
]

confused what"{1,#,2,3}"means? > read more on how binary tree is serialized on OJ.

OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
   1
  / \
 2   3
    /
   4
    \
     5
The above binary tree is serialized as"{1,2,3,#,#,4,#,#,5}".
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.Queue;
public class Solution {
    public ArrayList<ArrayList<Integer>> levelOrderBottom(TreeNode root) {
        ArrayList<ArrayList<Integer>> res = new ArrayList<>();
        if (root == null) {
            return res;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        ArrayList<Integer> tmp = new ArrayList<>();
        TreeNode lastNode = null, levelLastNode = root;
        while (queue.size() != 0) { //注意while别误写成if
            TreeNode node = queue.poll();
            tmp.add(node.val);
            if (node.left != null) {
                lastNode = node.left;
                queue.add(node.left);
            }
            if (node.right != null) {
                lastNode = node.right;
                queue.add(node.right);
            }
            if (node == levelLastNode) {
                levelLastNode = lastNode;
                res.add(new ArrayList<>(tmp)); //注意此处 还是要新创建一个tmp数组,不然后面tmp清零了,res数组里的tmp也清零的
                tmp.clear();
            }
        }
        Collections.reverse(res);
        return res;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

【点评】注意此处 还是要新创建一个tmp数组,不然后面tmp清零了,res数组里的tmp也清零的

12、construct-binary-tree-from-inorder-and-postorder-traversal
【题目】:
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.

【解答】:

import java.util.HashMap;
public class Solution {
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        HashMap<Integer, Integer> map = new HashMap<>();
        for (int i = 0; i < inorder.length; i++) {
            map.put(inorder[i], i);
        }
        return inPostCons(inorder, postorder, map, 0, inorder.length-1, 0, postorder.length-1);
    }

    TreeNode inPostCons(int[] inorder, int[] postorder, HashMap<Integer, Integer> map, int inStart, int inEnd, int pStart, int pEnd) {
        if (pStart > pEnd) {
            return null;
        }
        TreeNode node = new TreeNode(postorder[pEnd]);
        int tmp = map.get(postorder[pEnd]);
        node.left = inPostCons(inorder, postorder, map, inStart, tmp-1, pStart, pStart +tmp -inStart -1);
        node.right = inPostCons(inorder, postorder, map, tmp +1, inEnd, pStart + tmp -inStart, pEnd-1);
        return node;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号