当前位置:   article > 正文

【halcon深度学习】图像分割数据集格式的转换_将halcon的标记hdict转为yolo

将halcon的标记hdict转为yolo

前言

目前用于**图像分割的**数据集,我目前接触到的用的比较多的有:
1 PASCAL VOC
2 COCO
3 YOLO
4 Halcon自己的格式(其实就是Halcon字典类型)
  • 1
  • 2
  • 3
  • 4
  • 5

当前我涉及到计算机视觉中的数据集格式有,PASCAL VOC、COCO 和 YOLO 用于不同的目标检测和图像分割任务。以下是这三种数据集格式的介绍:

1. PASCAL VOC 格式:

PASCAL VOC(Visual Object Classes)是一个广泛使用的目标检测和图像分割数据集,其标注格式以XML文件的形式提供。以下是一个PASCAL VOC格式的示例(针对单个物体):

<annotation>
	<folder>images</folder>
	<filename>example.jpg</filename>
	<source>
		<database>PASCAL VOC</database>
	</source>
	<size>
		<width>800</width>
		<height>600</height>
		<depth>3</depth>
	</size>
	<object>
		<name>cat</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<bndbox>
			<xmin>200</xmin>
			<ymin>150</ymin>
			<xmax>400</xmax>
			<ymax>450</ymax>
		</bndbox>
	</object>
</annotation>
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

2. COCO 格式:

COCO(Common Objects in Context)是一个用于目标检测、分割和关键点估计的大规模数据集,其标注格式以JSON文件的形式提供。以下是一个COCO格式的示例(针对单个物体):

{
	"info": {},
	"images": [
		{
			"id": 1,
			"file_name": "example.jpg",
			"width": 800,
			"height": 600,
			"depth": 3
		}
	],
	"annotations": [
		{
			"id": 1,
			"image_id": 1,
			"category_id": 1,
			"bbox": [200, 150, 200, 300],
			"area": 60000,
			"iscrowd": 0
		}
	],
	"categories": [
		{
			"id": 1,
			"name": "cat"
		}
	]
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

3. YOLO 格式:

YOLO(You Only Look Once)是一个目标检测算法,同时也有其特定的数据集格式。YOLO格式通常需要一个文本文件,其中每行描述了一张图像中的目标。以下是一个YOLO格式的示例(每行表示单个物体):

0 0.45 0.35 0.2 0.5
  • 1

在此示例中,每行包含了类别索引和目标的归一化坐标信息(中心点坐标和宽高相对于图像尺寸的比例)。

请注意,这些示例仅为了演示目的,实际数据集文件可能包含更多图像和目标的标注信息。不同的数据集格式适用于不同的任务和算法,您在使用特定数据集时需要了解其相应的标注格式。

这几种格式,都是描述图片中的某个框框的位置,以及这个框框对应的类别。

背景

我现在手头有一个PASCAL VOC 格式的数据集,每张图片都有对应好的标记图片,我现在想用halcon去读取整个数据集。但是,halcon是有自己的标注工具的:MVTec Deep Learning Tool
有这个软件标注的图片,导出的数据集格式是:.hdict
那有没有办法,把 PASCAL VOC 直接转为 .hdict 格式呢?

PASCAL VOC 转 .hdict

PASCAL VOC 的格式类型,我们已经看到了,就是个XML解析这个XML不在话下,但是 .hdict这个文件是个二进制的文件,看不到其中的内容。
于是,我搜索全网,发现了一个 PASCAL VOC 转 .hdict 的一个halcon脚本,然后花了一块大洋买了下来,下载下来一看,问题不大,稍微改改果然能用:

*read_dict ('C:/Users/12820/Desktop/数据/分割.hdict', [], [], DictHandle)
* Image Acquisition 01: Code generated by Image Acquisition 01

*read_dl_dataset_from_coco
*read_dl


create_dict (NEWDictHandle1)
class_ids:=[0,1,2,3,4,5]
class_names:=['crazing', 'inclusion', 'patches', 'pitted_surface', 'rolled-in_scale', 'scratches']
image_dir:='images/'

set_dict_tuple (NEWDictHandle1, 'class_ids', class_ids)
set_dict_tuple (NEWDictHandle1, 'class_names', class_names)
set_dict_tuple (NEWDictHandle1, 'image_dir', image_dir)

list_files ('images/', ['files','follow_links','recursive'], ImageFiles)
tuple_regexp_select (ImageFiles, ['\\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)


list_files ('labels/', ['files','follow_links','recursive'], xmladdress)
samples:=[]
for Index := 0 to |ImageFiles| - 1 by 1
    read_image (Image, ImageFiles[Index])
    
    
    
    
    
   open_file (xmladdress[Index], 'input', FileHandle)
   IsEof := false
   bbox_row1:=[]  
   bbox_col1:=[]  
   bbox_row2:=[]  
   bbox_col2:=[]  
   bbox_label_id:=[]
   while (not(IsEof))
       fread_line (FileHandle, XmlElement, IsEof)
       if (IsEof)
           break
       endif
       tuple_split (XmlElement, '<''>', Substrings)
       create_dict (image)
       if (Substrings[1]=='folder')
           floder:= Substrings[2] 
       endif  
       if (Substrings[1]=='filename')
           filename:= Substrings[2] 
       endif    
       *class_names:=['crazing', 'inclusion', 'patches', 'pitted_surface', 'rolled-in_scale', 'scratches']
       if (Substrings[1]=='name')
           if (Substrings[2]== class_names[0] )
               bbox_label_id:=[bbox_label_id,0]
           elseif (Substrings[2]==class_names[1])
               bbox_label_id:=[bbox_label_id,1]
           elseif (Substrings[2]==class_names[2])
               bbox_label_id:=[bbox_label_id,2]
           elseif (Substrings[2]==class_names[3])
                    bbox_label_id:=[bbox_label_id,3]
           elseif (Substrings[2]==class_names[4])
               bbox_label_id:=[bbox_label_id,4]
           elseif (Substrings[2]==class_names[5])
               bbox_label_id:=[bbox_label_id,5]
           endif
      endif
      
      if (Substrings[1]=='xmin')
          bbox_col1:= [bbox_col1,Substrings[2]]
          tuple_number (bbox_col1, bbox_col1)
   
      endif  
      if (Substrings[1]=='ymin')
          bbox_row1:= [bbox_row1,Substrings[2] ]
          tuple_number (bbox_row1, bbox_row1)
      endif  
      if (Substrings[1]=='xmax')
          bbox_col2:=[bbox_col2, Substrings[2] ]
          tuple_number (bbox_col2, bbox_col2)
      endif  
      if (Substrings[1]=='ymax')
          bbox_row2:=[bbox_row2, Substrings[2] ]
          tuple_number (bbox_row2, bbox_row2)
      endif  


    endwhile
    
    
   * gen_rectangle1 (Rectangle,bbox_row1 , bbox_col1,bbox_row2 , bbox_col2)
   
  set_dict_tuple (image, 'image_id', Index+1)
  set_dict_tuple (image, 'image_file_name', floder+'/'+filename)
  set_dict_tuple (image, 'bbox_label_id', bbox_label_id)
  set_dict_tuple (image, 'bbox_row1', bbox_row1)
  set_dict_tuple (image, 'bbox_col1', bbox_col1)
  set_dict_tuple (image, 'bbox_row2', bbox_row2)
  set_dict_tuple (image, 'bbox_col2', bbox_col2)
 samples:=[samples,image]
    
    *stop()  
endfor

set_dict_tuple (NEWDictHandle1, 'samples', samples)
 
write_dict (NEWDictHandle1, '数据test.hdict', [], [])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105

看到最后一句:write_dict 才意识到,原来所谓的.hdict文件就是halcon里的字典格式啊!
虽然,这个脚本文件可以用,但是1800条数据转换下来,花费了将近半个小时,这能忍?
还有就是PASCAL VOC标注文件有点地方图片名称没带后缀导致,导入后图片无法在
Deep Learning Tool 中显示!所以,搞清楚原理之后,我还是自己写个工具才更省心啊:

HTuple NEWDict;
HOperatorSet.CreateDict(out NEWDict);

 List<int> class_ids = new List<int> { 0, 1, 2, 3, 4, 5 };
 List<string> class_names = new List<string> { "crazing", "inclusion", "patches", "pitted_surface", "rolled-in_scale", "scratches" };
 string image_dir = "F:\\temp\\数据集格式转换测试\\images";

 //图片字典
 HTuple hv_image = new HTuple();
 HTuple hv_samples = new HTuple();

 HTuple hv_class_ids = new HTuple(class_ids.ToArray());
 HTuple hv_class_names = new HTuple(class_names.ToArray());
 HTuple hv_image_dir = new HTuple(image_dir);

 HOperatorSet.SetDictTuple(NEWDict, "class_ids", hv_class_ids);
 HOperatorSet.SetDictTuple(NEWDict, "class_names", hv_class_names);
 HOperatorSet.SetDictTuple(NEWDict, "image_dir", hv_image_dir);


 string[] imageFiles = Directory.GetFiles(image_dir, "*.*", SearchOption.AllDirectories);

 List<Dictionary<string, object>> samples = new List<Dictionary<string, object>>();

 int index = 0;
 string extension = "";
 foreach (string imagePath in imageFiles)
 {
     HOperatorSet.CreateDict(out hv_image);

     string xmlPath = "D:/DATASET/yolo/NEU-DET/ANNOTATIONS/" + Path.GetFileNameWithoutExtension(imagePath) + ".xml";

     XDocument xdoc;
     using (StreamReader reader = new StreamReader(xmlPath))
     {
         string xmlContent = reader.ReadToEnd();
         xdoc = XDocument.Parse(xmlContent);
         
         // 现在可以使用xdoc进行XML解析操作
     }

     XElement xroot = xdoc.Root;//根节点
     List<int> bbox_label_ids = new List<int>();
     List<int> bbox_col1 = new List<int>();
     List<int> bbox_row1 = new List<int>();
     List<int> bbox_col2 = new List<int>();
     List<int> bbox_row2 = new List<int>();

     //----folder
     var folder = xroot.Element("folder").Value;

     //----filename
     var filename = xroot.Element("filename").Value;
     if(Path.GetExtension(filename) != "")
     {
         extension = Path.GetExtension(filename);
     }
     else
     {
         if (extension != "")
         {
             filename += extension;
         }
     }


     //----获取object节点(一个xml中可能会有多个)
     var objectNodes = xroot.Descendants("object");

     foreach (var objectNode in objectNodes)
     {
         //bndbox节点,包含xmin,ymin,xmax,ymax
         XElement bndboxNode = objectNode.Element("bndbox");
         XElement xminNode = bndboxNode.Element("xmin");
         XElement yminNode = bndboxNode.Element("ymin");
         XElement xmaxNode = bndboxNode.Element("xmax");
         XElement ymaxNode = bndboxNode.Element("ymax");

         // 解析坐标值并添加到相应列表
         bbox_col1.Add(int.Parse(xminNode.Value));
         bbox_row1.Add(int.Parse(yminNode.Value));
         bbox_col2.Add(int.Parse(xmaxNode.Value));
         bbox_row2.Add(int.Parse(ymaxNode.Value));

         // 获取类别名称对应的编号,并添加到相应列表
         string className = objectNode.Element("name").Value;
         int id = class_names.IndexOf(className);
         bbox_label_ids.Add(id);                                
     }


     HOperatorSet.SetDictTuple(hv_image, "image_id", index + 1);
     HOperatorSet.SetDictTuple(hv_image, "image_file_name", (folder + "/") + filename);
     HOperatorSet.SetDictTuple(hv_image, "bbox_label_id", bbox_label_ids.ToArray());
     HOperatorSet.SetDictTuple(hv_image, "bbox_row1", bbox_row1.ToArray());
     HOperatorSet.SetDictTuple(hv_image, "bbox_col1", bbox_col1.ToArray());
     HOperatorSet.SetDictTuple(hv_image, "bbox_row2", bbox_row2.ToArray());
     HOperatorSet.SetDictTuple(hv_image, "bbox_col2", bbox_col2.ToArray());


     // hv_image添加到samples
     using (HDevDisposeHelper dh = new HDevDisposeHelper())
     {                
         HTuple ExpTmpLocalVar_samples = hv_samples.TupleConcat(hv_image);
         hv_samples.Dispose();
         hv_samples = ExpTmpLocalVar_samples;                    
     }

     index++;
 }

 HOperatorSet.SetDictTuple(NEWDict, "samples", hv_samples);
 HOperatorSet.WriteDict(NEWDict, "数据Csharp.hdict", new HTuple(), new HTuple());
 MessageBox.Show("转换完成");
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114

这次使用XDocument方式解析,弹指间,转换就完成了!再次用Deep Learning Tool打开转换好的Csharp.hdict,这次就成功了。
在这里插入图片描述

如何用Deep Learning Tool打开转换好的Csharp.hdict

先新建一个工程

我标注的时候用的对齐矩形,这里我就选择对象检测项目:
在这里插入图片描述
然后选择导入数据集:
在这里插入图片描述
点击导入数据:
在这里插入图片描述

创建项目之后,发现图片没找到,这里可以选择浏览,选择你图片的所在位置即可:
在这里插入图片描述
这样整个工程的打开完毕了~~~~~

读取.hdict 格式的数据集

有了.hdict 这个格式的数据集,怎么用呢?

*读取数据集!!!这个就是深度学习工具标记的字典
read_dict (“xxxxx.hdict”, [], [], DLDataset)
应为它就是一个字典,所以直接使用read_dict就能读取数据集了!

还有,halcon除了自家的数据集之外,其实可以直接读取coco数据集:
read_dl_dataset_from_coco (FileExists, [], [], DLDataset1)
是不是很方便!

具体如何训练数据这些内容,后续持续输出,我们下一篇文章见!

附录

附送一个PASCAL VOC 转 YOLO的 python脚本!

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
import glob


classes = ["crazing", "inclusion", "patches", "pitted_surface", "rolled-in_scale", "scratches"]

def convert(size, box):
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)

def convert_annotation(image_name):
    in_file = open('./ANNOTATIONS/'+image_name[:-3]+'xml')
    out_file = open('./LABELS/'+image_name[:-3]+'txt','w')
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    for obj in root.iter('object'):
        cls = obj.find('name').text
        if cls not in classes:
            print(cls)
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

wd = getcwd()

if __name__ == '__main__':
    for image_path in glob.glob("./IMAGES/*.jpg"):
        image_name = image_path.split('\\')[-1]
        #print(image_path)
        convert_annotation(image_name)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号