当前位置:   article > 正文

利用 Python 进行数据分析实验(五)_python数据分析实验

python数据分析实验

一、实验目的

使用Python解决问题

二、实验要求

自主编写并运行代码,按照模板要求撰写实验报告

三、实验步骤

1 爬取并下载当当网某一本书的网页内容,并保存为html格式
2 在豆瓣网上爬取某本书的前50条短评内容并计算评分的平均值(自学正则表达式)
3 从https://cs.lianjia.com/上爬取长沙某小区的二手房信息(以名都花园为例),并将其保存到EXCEL文件当中

四、实验结果

T1

"""
爬取并下载当当网某一本书的网页内容,并保存为html格式
"""
import os
from urllib import request

header = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0',
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'}

url = 'http://product.dangdang.com/24029955.html'

req = request.Request(url, headers=header)

html = str(request.urlopen(req).read)

is_exist = os.path.exists('DangDang.html')

if not is_exist:
    with open('DangDang.html', 'w+') as f:
        f.write(html)

else:
    print('File already exsist')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24

T2

"""
在豆瓣网上爬取某本书的前50条短评内容并计算评分的平均值(自学正则表达式)
"""
import re
from urllib import request

from bs4 import BeautifulSoup

comments = []
list = []


def get_commment(comment):
    count = 0
    for i in comment:
        count = count + 1
        # print(count, i.string) # 也可以使用正则
        comments.append(i.string)


def get_score(score):
    pattern = re.compile('<span class="user-stars allstar(.*?) rating"')
    res = re.findall(pattern, str(score))
    for irr in res:
        list.append(float(irr))


header = {
    'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0',
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'}

p = 0

for i in range(0, 3):
    url = f'https://book.douban.com/subject/26912767/comments/?start={i * 20}&limit={(i + 1) * 20}&status=P&sort=new_score'
    req = request.Request(url, headers=header)
    html = request.urlopen(req).read()
    soup = BeautifulSoup(html, 'html.parser')

    # get_commment(html.find_all("span", class_="short"))
    get_score(soup)
    get_commment(soup.find_all("span", class_="short"))

for j in range(0, 50):
    print(comments[j])

sum = 0.0
for j in range(0, 50):
    sum = sum + float(list[j])
print(sum / 50 * 2 / 10)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50

T3

"""
从https://cs.lianjia.com/上爬取长沙某小区的二手房信息(以名都花园为例),并将其保存到EXCEL文件当中
"""
from urllib import request
import xlwt
from bs4 import BeautifulSoup


def getHouseList(url):
    house = []
    header = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'}

    req = request.Request(url, headers = header)
    html = request.urlopen(req).read()
    soup = BeautifulSoup(html, 'html.parser')

    housename_divs = soup.find_all('div', class_='title')
    for housename_div in housename_divs:
        housename_as = housename_div.find_all('a')
        for housename_a in housename_as:
            housename = []

            housename.append(housename_a.get_text())

            housename.append(housename_a.get('href'))
            house.append(housename)
    huseinfo_divs = soup.find_all('div', class_='houseInfo')
    for i in range(len(huseinfo_divs)):
        info = huseinfo_divs[i].get_text()
        infos = info.split('|')
        # 小区名称
        house[i].append(infos[0])
        # 户型
        house[i].append(infos[1])
        # 平米
        house[i].append(infos[2])
    # 查询总价
    house_prices = soup.find_all('div', class_='totalPrice')
    for i in range(len(house_prices)):
        # 价格
        price = house_prices[i].get_text()
        house[i].append(price)
    return house


# 爬取房屋详细信息:所在区域、套内面积
def houseinfo(url):
    header = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'}

    req = request.Request(url, headers=header)
    html = request.urlopen(req).read()
    soup = BeautifulSoup(html, 'html.parser')
    msg = []
    # 所在区域
    areainfos = soup.find_all('span', class_='info')
    for areainfo in areainfos:
        area = areainfo.find('a')
        if (not area):
            continue
        hrefStr = area['href']
        if (hrefStr.startswith('javascript')):
            continue
        msg.append(area.get_text())
        break
    infolist = soup.find_all('div', id='infoList')
    num = []
    for info in infolist:
        cols = info.find_all('div', class_='col')
        for i in cols:
            pingmi = i.get_text()
            try:
                a = float(pingmi[:-2])
                num.append(a)
            except ValueError:
                continue
    msg.append(sum(num))
    return msg


def writeExcel(excelPath, houses):
    workbook = xlwt.Workbook()
    sheet = workbook.add_sheet('git')
    row0 = ['标题', '链接地址', '户型', '面积', '朝向', '总价', '所属区域', '套内面积']
    for i in range(0, len(row0)):
        sheet.write(0, i, row0[i])
    for i in range(0, len(houses)):
        house = houses[i]
        print(house)
        for j in range(0, len(house)):
            sheet.write(i + 1, j, house[j])
    workbook.save(excelPath)


# 主函数
def main():
    data = []
    for i in range(1, 5):
        print('-----分隔符', i, '-------')
        if i == 1:
            url = 'https://cs.lianjia.com/ershoufang/c3511059937033rs%E5%90%8D%E9%83%BD%E8%8A%B1%E5%9B%AD/'
        else:
            url = 'https://cs.lianjia.com/ershoufang/pg' + str(
                i) + 'c3511059937033rs%E5%90%8D%E9%83%BD%E8%8A%B1%E5%9B%AD/'
        houses = getHouseList(url)
        for house in houses:
            link = house[1]
            if (not link or not link.startswith('http')):
                continue
            mianji = houseinfo(link)
            house.extend(mianji)
        data.extend(houses)
    writeExcel('C:/Users/Lunatic/Desktop/cs.xls', data)


if __name__ == '__main__':
    main()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120

五、实验体会

爬虫是Python重要的应用场景,在使用相关技术时不仅仅需要熟悉相关的Python库,更要仔细分析网页,寻找其中规律进行爬取,达成自动化的初衷。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/809543
推荐阅读
相关标签
  

闽ICP备14008679号