当前位置:   article > 正文

【目标检测实验系列】YOLOv5模型改进:融合混合注意力机制CBAM,关注通道和空间特征,助力模型高效涨点!(内含源代码,超详细改进代码流程)_yolov5融合改进

yolov5融合改进

       自我介绍:本人硕士期间全程放养,目前成果:一篇北大核心CSCD录用,两篇中科院三区已见刊,一篇中科院四区在投。如何找创新点,如何放养过程厚积薄发,如何写中英论文,找期刊等等。本人后续会以自己实战经验详细写出来,还请大家能够点个关注和赞,收藏一下,谢谢大家。

1. 文章主要内容

       本篇博客主要涉及混合(通道角度与空间角度)注意力机制CBAM融合到YOLOv5模型中。(通读本篇博客需要7分钟左右的时间)

2. 详细代码改进流程

2.1 CBAM源代码(大家自己创建CBAM.py文件)

       注意,博主在CBAM源码当中添加了C3与CBAM结合的代码,还有main函数的测试案例,不影响CBAM的单独使用。

import numpy as np
import torch
from torch import nn
from torch.nn import init

from models.common import Bottleneck, Conv


class ChannelAttention(nn.Module):
    def __init__(self, channel, reduction=16):
        super().__init__()
        self.maxpool = nn.AdaptiveMaxPool2d(1)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.se = nn.Sequential(
            nn.Conv2d(channel, channel // reduction, 1, bias=False),
            nn.ReLU(),
            nn.Conv2d(channel // reduction, channel, 1, bias=False)
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        max_result = self.maxpool(x)
        avg_result = self.avgpool(x)
        max_out = self.se(max_result)
        avg_out = self.se(avg_result)
        output = self.sigmoid(max_out + avg_out)
        return output


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super().__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        max_result, _ = torch.max(x, dim=1, keepdim=True)
        avg_result = torch.mean(x, dim=1, keepdim=True)
        result = torch.cat([max_result, avg_result], 1)
        output = self.conv(result)
        output = self.sigmoid(output)
        return output


class CBAMBlock(nn.Module):

    def __init__(self, channel=512, reduction=16, kernel_size=7):
        super().__init__()
        self.ca = ChannelAttention(channel=channel, reduction=reduction)
        self.sa = SpatialAttention(kernel_size=kernel_size)

    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)

    def forward(self, x):
        b, c, _, _ = x.size()
        out = x * self.ca(x)
        out = out * self.sa(out)
        return out

class C3CBAM(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=True, g=1,
                 e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion #iscyy

        super(C3CBAM, self).__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cbam = CBAMBlock(c1)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        # self.m = nn.Sequential(*[CB2d(c_) for _ in range(n)])
        self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])

    def forward(self, x):
        out = torch.cat((self.m(self.cv1(self.cbam(x))), self.cv2(self.cbam(x))), dim=1)
        out = self.cv3(out)
        return out

if __name__ == '__main__':
    input = torch.randn(50, 512, 7, 7)
    cbam = C3CBAM(512, 512)
    output = cbam(input)
    print(output.shape)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95

       需要注意到: 源代码CBAMBlock类只需要传入一个输入的通道数channel,与YOLOv5的C3结构融合后,则C3CBAM需要传入输入和输出通道数,但大家仔细发现在C3CBAM的这行代码self.cbam =CBAMBlock(c1),实际的CBAM也只是需要传入输入的通道数即可。大家可以通过main函数进行测试。另外,在C3CBAM中,其中cv1和cv2方法里面的参数x都先通过了cbam注意力机制,这里大家可以自定义的设置。

2.2 建立一个yolov5-cbam.yaml文件

       注意到,这里博主直接使用C3CBAM代替Backbone部分的四个C3结构,另外注意nc改为自己数据集的类别数。当然,CBAM结构可以自由的放到网络当中的任何结构,但需要特别注意放了之后层次的更替问题,如有不懂,可以查看我之前写的一篇博客(以及评论区注意点):【目标检测实验系列】通过全局上下文注意力机制Global Context Block(GC)融合到YOLOv5案例,吃透简单即插即用注意力机制代码修改要点,举一反三!(超详细改进代码流程)

# YOLOv5 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/829311
推荐阅读
相关标签