赞
踩
2015 年 张勇 发布了 DroidPlugin,使用 hook 系统方式实现插件化。
2015 年 携程发布 DynamicApk
2015 - 2016 之间(这块时间不太确定),Lody 发布了 VirtualApp,可以直接运行未安装的 apk,基本上还是使用 hook 系统的方式实现的,不过里面的实现要精致很多,实现了自己的一套 AMS 来管理插件 Activity 等等。
2017 年阿里推出 Atlas
2017 年 360 推出 RePlugin
2017 年滴滴推出 VirtualApk
2019 年腾讯推出了 Shadow,号称是零反射,并且框架自身也可实现动态化,看了代码以后发现,其实本质上还是使用了代理分发生命周期实现四大组件动态化,然后抽象接口来实现框架的动态化。后面有机会可以对其做一下分析。
这基本上就是插件化框架的历史,从 2012 至今,可以说插件化技术基本成型了,主要就是代理和 hook 系统两种方式(这里没有统计热修复的发展,热修复其实和插件化还是有些想通的地方,后面的文章会对热修复进行介绍)。如果看未来的话,斗胆预测,插件化技术的原理,应该不会有太大的变动了。
在插件化中有一些专有名词,如果是第一次接触可能不太了解,这里解释一下。
宿主
负责加载插件的 apk,一般来说就是已经安装的应用本身。
StubActivity
宿主中的占位 Activity,注册在宿主 Manifest 文件中,负责加载插件 Activity。
PluginActivity
插件 Activity,在插件 apk 中,没有注册在 Manifest 文件中,需要 StubActivity 来加载。
在学习和开发插件化的时候,我们需要动态去加载插件 apk,所以开发过程中一般需要有两个 apk,一个是宿主 apk,一个是插件 apk,对应的就需要有宿主项目和插件项目。
在 CommonTec 这里创建了 app 作为宿主项目,plugin 为插件项目。为了方便,我们直接把生成的插件 apk 放到宿主 apk 中的 assets 中,apk 启动时直接放到内部存储空间中方便加载。
这样的项目结构,我们调试问题时的流程就是下面这样:
修改插件项目 -> 编译生成插件 apk -> 拷贝插件 apk 到宿主 assets -> 修改宿主项目 -> 编译生成宿主 apk -> 安装宿主 apk -> 验证问题
如果每次我们修改一个很小的问题,都经历这么长的流程,那么耐心很快就耗尽了。最好是可以直接编译宿主 apk 的时候自动打包插件 apk 并拷贝到宿主 assets 目录下,这样我们不管修改什么,都直接编译宿主项目就好了。如何实现呢?还记得我们之前讲解过的 gradle 系列么?现在就是学以致用的时候了。
首先在 plugin 项目的 build.gradle 添加下面的代码:
project.afterEvaluate {
project.tasks.each {
if (it.name == “assembleDebug”) {
it.doLast {
copy {
from new File(project.getBuildDir(), ‘outputs/apk/debug/plugin-debug.apk’).absolutePath
into new File(project.getRootProject().getProjectDir(), ‘app/src/main/assets’)
rename ‘plugin-debug.apk’, ‘plugin.apk’
}
}
}
}
}
这段代码是在 afterEvaluate 的时候,遍历项目的 task,找到打包 task 也就是 assembleDebug,然后在打包之后,把生成的 apk 拷贝到宿主项目的 assets 目录下,并且重命名为 plugin.apk。 然后在 app 项目的 build.gradle 添加下面的代码:
project.afterEvaluate {
project.tasks.each {
if (it.name == ‘mergeDebugAssets’) {
it.dependsOn ‘:plugin:assembleDebug’
}
}
}
找到宿主打包的 mergeDebugAssets 任务,依赖插件项目的打包,这样每次编译宿主项目的时候,会先编译插件项目,然后拷贝插件 apk 到宿主 apk 的 assets 目录下,以后每次修改,只要编译宿主项目就可以了。
ClassLoader 是插件化中必须要掌握的,因为插件是未安装的 apk,系统不会处理其中的类,所以需要我们自己来处理。
BootstrapClassLoader
负责加载 JVM 运行时的核心类,比如 JAVA_HOME/lib/rt.jar 等等
ExtensionClassLoader
负责加载 JVM 的扩展类,比如 JAVA_HOME/lib/ext 下面的 jar 包
AppClassLoader
负责加载 classpath 里的 jar 包和目录
在这里,我们统称 dex 文件,包含 dex 的 apk 文件以及 jar 文件为 dex 文件 PathClassLoader 用来加载系统类和应用程序类,可以加载已经安装的 apk 目录下的 dex 文件
DexClassLoader 用来加载 dex 文件,可以从存储空间加载 dex 文件。
我们在插件化中一般使用的是 DexClassLoader。
每一个 ClassLoader 中都有一个 parent 对象,代表的是父类加载器,在加载一个类的时候,会先使用父类加载器去加载,如果在父类加载器中没有找到,自己再进行加载,如果 parent 为空,那么就用系统类加载器来加载。通过这样的机制可以保证系统类都是由系统类加载器加载的。 下面是 ClassLoader 的 loadClass 方法的具体实现。
protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException { // First, check if the class has already been loaded Class<?> c = findLoadedClass(name);
if (c == null) {
try {
if (parent != null) {
// 先从父类加载器中进行加载
c = parent.loadClass(name, false);
} else {
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// ClassNotFoundException thrown if class not found
// from the non-null parent class loader
}
if (c == null) {
// 没有找到,再自己加载
c = findClass(name);
}
}
return c;
}
要加载插件中的类,我们首先要创建一个 DexClassLoader,先看下 DexClassLoader 的构造函数需要那些参数。
public class DexClassLoader extends BaseDexClassLoader {
public DexClassLoader(String dexPath, String optimizedDirectory, String librarySearchPath, ClassLoader parent) {
// …
}
}
构造函数需要四个参数:
dexPath 是需要加载的 dex / apk / jar 文件路径
optimizedDirectory 是 dex 优化后存放的位置,在 ART 上,会执行 oat 对 dex 进行优化,生成机器码,这里就是存放优化后的 odex 文件的位置
librarySearchPath 是 native 依赖的位置
parent 就是父类加载器,默认会先从 parent 加载对应的类
创建出 DexClassLaoder 实例以后,只要调用其 loadClass(className) 方法就可以加载插件中的类了。具体的实现在下面:
// 从 assets 中拿出插件 apk 放到内部存储空间
private fun extractPlugin() {
var inputStream = assets.open(“plugin.apk”)
File(filesDir.absolutePath, “plugin.apk”).writeBytes(inputStream.readBytes())
}
private fun init() {
extractPlugin()
pluginPath = File(filesDir.absolutePath, “plugin.apk”).absolutePath
nativeLibDir = File(filesDir, “pluginlib”).absolutePath
dexOutPath = File(filesDir, “dexout”).absolutePath
// 生成 DexClassLoader 用来加载插件类
pluginClassLoader = DexClassLoader(pluginPath, dexOutPath, nativeLibDir, this::class.java.classLoader)
}
插件化,就是从插件中加载我们想要的类并运行,如果这个类是一个普通类,那么使用上面说到的 DexClassLoader 就可以直接加载了,如果这个类是特殊的类,比如说 Activity 等四大组件,那么就需要一些特殊的处理,因为四大组件是需要和系统进行交互的。插件化中,四大组件需要解决的难点如下:
我们之前说到 Activity 插件化的难点,我们先来理顺一下为什么会有这两个问题。
因为插件是动态加载的,所以插件的四大组件不可能注册到宿主的 Manifest 文件中,而没有在 Manifest 中注册的四大组件是不能和系统直接进行交互的。
可能有些同学会问,那为什么不能直接把插件的 Activity 注册到宿主 Manifest 里呢?这样是可以,不过就失去了插件化的动态特性,如果每次插件中新增 Activity 都要修改宿主 Manifest 并且重新打包,那就和直接写在宿主中没什么区别了。
我们再来说一下为什么没有注册的 Activity 不能和系统交互
这里的不能直接交互的含义有两个
android.content.ActivityNotFoundException: Unable to find explicit activity class {com.zy.commontec/com.zy.plugin.PluginActivity}; have you declared this activity in your AndroidManifest.xml?
这个 log 在 Instrumentation 的 checkStartActivityResult 方法中可以看到:
public class Instrumentation {
public static void checkStartActivityResult(int res, Object intent) {
if (!ActivityManager.isStartResultFatalError(res)) {
return;
}
switch (res) {
case ActivityManager.START_INTENT_NOT_RESOLVED:
case ActivityManager.START_CLASS_NOT_FOUND:
if (intent instanceof Intent && ((Intent)intent).getComponent() != null)
throw new ActivityNotFoundException(
"Unable to find explicit activity class "
其实上面两个问题,最终都指向同一个难点,那就是插件中的 Activity 的生命周期如何被调用。 解决问题之前我们先看一下正常系统是如何启动一个 Activity 的。
这里对 Activity 的启动流程进行一些简单的介绍,具体的流程代码就不分析了,因为分析的话大概又能写一篇文章了,而且其实关于 Activity 的启动过程也有不少文章有分析了。这里放一张简图说明一下:
整个调用路径如下:
Activity.startActivity -> Instrumentation.execStartActivity -> Binder -> AMS.startActivity -> ActivityStarter.startActivityMayWait -> startActivityLocked -> startActivityUnChecked -> ActivityStackSupervisor.resumeFocusedStackTopActivityLocked -> ActivityStatk.resumeTopAcitivityUncheckLocked -> resumeTopActivityInnerLocked -> ActivityStackSupervisor.startSpecificActivityLocked -> realStartActivityLocked -> Binder -> ApplictionThread.scheduleLauchActivity -> H -> ActivityThread.scheduleLauchActivity -> handleLaunchActivity -> performLaunchActivity -> Instrumentation.newActivity 创建 Activity -> callActivityOnCreate 一系列生命周期
其实我们可以把 AMS 理解为一个公司的背后大 Boss,Activity 相当于小职员,没有权限直接和大 Boss 说话,想做什么事情都必须经过秘书向上汇报,然后秘书再把大 Boss AMS 的命令传达下来。而且大 Boss 那里有所有职员的名单,如果想要混入非法职员时不可能的。而我们想让没有在大 Boss 那里注册的编外人员执行任务,只有两种方法,一种是正式职员领取任务,再分发给编外人员,另一种就是欺骗 Boss,让 Boss 以为这个职员是已经注册的。
对应到实际的解决方法就是:
说完生命周期的问题,再来看一下资源的问题
在 Activity 中,基本上都会展示界面,而展示界面基本上都要用到资源。
在 Activity 中,有一个 mResources 变量,是 Resources 类型。这个变量可以理解为代表了整个 apk 的资源。
在宿主中调用的 Activity,mResources 自然代表了宿主的资源,所以需要我们对插件的资源进行特殊的处理。
我们先看一下如何生成代表插件资源的 Resources 类。
首先要生成一个 AssetManager 实例,然后通过其 addAssetPath 方法添加插件的路径,这样 AssetManager 中就包含了插件的资源。然后通过 Resources 构造函数生成插件资源。具体代码如下:
private fun handleResources() {
try {
// 首先通过反射生成 AssetManager 实例
pluginAssetManager = AssetManager::class.java.newInstance()
// 然后调用其 addAssetPath 把插件的路径添加进去。
val addAssetPathMethod = pluginAssetManager?.javaClass?.getMethod(“addAssetPath”, String::class.java)
addAssetPathMethod?.invoke(pluginAssetManager, pluginPath)
} catch (e: Exception) {
}
// 调用 Resources 构造函数生成实例
pluginResources = Resources(pluginAssetManager, super.getResources().displayMetrics, super.getResources().configuration)
}
前期准备的知识点差不多介绍完了,我们接着就看看具体的实现方法。
手动调用生命周期原理如下图:
我们手动调用插件 Activity 生命周期时,需要在正确的时机去调用,如何在正确的时机调用呢?那就是启动一个真正的 Activity,我们俗称占坑 Activity(StubActivity),然后在 StubActivity 的生命周期里调用插件 Activity 对应的生命周期,这样就间接的启动了插件 Activity。
在 StubActivity 中调用 插件 Activity 生命周期的方法有两种,一种是直接反射其生命周期方法,粗暴简单,唯一的缺点就是反射的效率问题。另外一种方式就是生成一个接口,接口里对应的是生命周期方法,让插件 Activity 实现这个接口,在 StubActivity 里就能直接调用接口方法了,从而避免了反射的效率低下问题。
具体的代码实现在CommonTec项目里可以找到,这里贴一下主要的实现(这里的实现和 CommonTec 里的可能会有些区别,CommonTec 里有些代码做了一些封装,这里主要做原理的解释)。
具体的实现见 反射调用生命周期,下面列出了重点代码。
class StubReflectActivity : Activity() {
protected var activityClassLoader: ClassLoader? = null
protected var activityName = “”
private var pluginPath = “”
private var nativeLibDir: String? = null
private var dexOutPath: String? = null
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
nativeLibDir = File(filesDir, “pluginlib”).absolutePath
dexOutPath = File(filesDir, “dexout”).absolutePath
pluginPath = intent.getStringExtra(“pluginPath”)
activityName = intent.getStringExtra(“activityName”)
// 创建插件 ClassLoader
activityClassLoader = DexClassLoader(pluginPath, dexOutPath, nativeLibDir, this::class.java.classLoader)
}
// 以 onCreate 方法为例,其他 onStart 等生命周期方法类似
fun onCreate(savedInstanceState: Bundle?) {
// 获取插件 Activity 的 onCreate 方法并调用
getMethod(“onCreate”, Bundle::class.java)?.invoke(activity, savedInstanceState)
}
fun getMethod(methodName: String, vararg params: Class<*>): Method? {
return activityClassLoader?.loadClass(activity)?.getMethod(methodName, *params)
}
}
具体的实现见 接口调用生命周期,下面列出了重点代码。 通过接口调用 Activity 生命周期的前提是要定义一个接口 IPluginActivity
interface IPluginActivity {
fun attach(proxyActivity: Activity)
fun onCreate(savedInstanceState: Bundle?)
fun onStart()
fun onResume()
fun onPause()
fun onStop()
fun onDestroy()
}
然后在插件 Activity 中实现这个接口
open class BasePluginActivity : Activity(), IPluginActivity {
var proxyActivity: Activity? = null
override fun attach(proxyActivity: Activity) {
this.proxyActivity = proxyActivity
}
override fun onCreate(savedInstanceState: Bundle?) {
if (proxyActivity == null) {
super.onCreate(savedInstanceState)
}
}
// …
}
在 StubActivity 通过接口调用插件 Activity 生命周期
class StubInterfaceActivity : StubBaseActivity() {
protected var activityClassLoader: ClassLoader? = null
protected var activityName = “”
private var pluginPath = “”
private var activity: IPluginActivity? = null
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
nativeLibDir = File(filesDir, “pluginlib”).absolutePath
dexOutPath = File(filesDir, “dexout”).absolutePath
pluginPath = intent.getStringExtra(“pluginPath”)
activityName = intent.getStringExtra(“activityName”)
// 生成插件 ClassLoader
activityClassLoader = DexClassLoader(pluginPath, dexOutPath, nativeLibDir, this::class.java.classLoader)
// 加载插件 Activity 类并转化成 IPluginActivity 接口
activity = activityClassLoader?.loadClass(activityName)?.newInstance() as IPluginActivity?
activity?.attach(this)
// 通过接口直接调用对应的生命周期方法
activity?.onCreate(savedInstanceState)
}
}
由于手动调用生命周期的方式,会重写大量的 Activity 生命周期方法,所以我们只要重写 getResources 方法,返回插件的资源实例就可以了。下面是具体代码。
open class StubBaseActivity : Activity() {
protected var activityClassLoader: ClassLoader? = null
protected var activityName = “”
private var pluginPath = “”
private var pluginAssetManager: AssetManager? = null
private var pluginResources: Resources? = null
private var pluginTheme: Resources.Theme? = null
private var nativeLibDir: String? = null
private var dexOutPath: String? = null
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
nativeLibDir = File(filesDir, “pluginlib”).absolutePath
dexOutPath = File(filesDir, “dexout”).absolutePath
pluginPath = intent.getStringExtra(“pluginPath”)
activityName = intent.getStringExtra(“activityName”)
activityClassLoader = DexClassLoader(pluginPath, dexOutPath, nativeLibDir, this::class.java.classLoader)
handleResources()
}
override fun getResources(): Resources? {
// 这里返回插件的资源,这样插件 Activity 中使用的就是插件资源了
return pluginResources ?: super.getResources()
}
override fun getAssets(): AssetManager {
return pluginAssetManager ?: super.getAssets()
}
override fun getClassLoader(): ClassLoader {
return activityClassLoader ?: super.getClassLoader()
}
private fun handleResources() {
try {
// 生成 AssetManager
pluginAssetManager = AssetManager::class.java.newInstance()
// 添加插件 apk 路径
val addAssetPathMethod = pluginAssetManager?.javaClass?.getMethod(“addAssetPath”, String::class.java)
addAssetPathMethod?.invoke(pluginAssetManager, pluginPath)
} catch (e: Exception) {
}
// 生成插件资源
pluginResources = Resources(pluginAssetManager, super.getResources().displayMetrics, super.getResources().configuration)
}
}
上面讲了如何通过手动调用插件 Activity 的生命周期方法来启动插件 Activity,现在来看一下欺骗系统的方法。
上面简单介绍了 Activity 的启动流程,我们可以看到,其实 Android 系统的运行是很巧妙的,AMS 是系统服务,应用通过 Binder 和 AMS 进行交互,其实和我们日常开发中客户端和服务端交互有些类似,只不过这里使用了 Binder 做为交互方式,关于 Binder,可以简单看看这篇文章。我们暂时只要知道通过 Binder 应用可以和 AMS 进行对话就行。
这种架构的设计方式,也为我们提供了一些机会。理论上来说,我们只要在启动 Activity 的消息到达 AMS 之前把 Activity 的信息就行修改,然后再消息回来以后再把信息恢复,就可以达到欺骗系统的目的了。
在这个流程里,有很多 hook 点可以进行,而且不同的插件化框架对于 hook 点的选择也不同,这里我们选择 hook Instrumentation 的方式进行介绍(原因是个人感觉这种方式要简单一点)。
简化以后的流程如下:
我们见过很多技术leader在面试的时候,遇到处于迷茫期的大龄程序员,比面试官年龄都大。这些人有一些共同特征:可能工作了7、8年,还是每天重复给业务部门写代码,工作内容的重复性比较高,没有什么技术含量的工作。问到这些人的职业规划时,他们也没有太多想法。
其实30岁到40岁是一个人职业发展的黄金阶段,一定要在业务范围内的扩张,技术广度和深度提升上有自己的计划,才有助于在职业发展上有持续的发展路径,而不至于停滞不前。
不断奔跑,你就知道学习的意义所在!
注意:我们之前因为秋招收集的二十套一二线互联网公司Android面试真题(含BAT、小米、华为、美团、滴滴)和我自己整理Android复习笔记(包含Android基础知识点、Android扩展知识点、Android源码解析、设计模式汇总、Gradle知识点、常见算法题汇总。)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
不断奔跑,你就知道学习的意义所在!
注意:我们之前因为秋招收集的二十套一二线互联网公司Android面试真题(含BAT、小米、华为、美团、滴滴)和我自己整理Android复习笔记(包含Android基础知识点、Android扩展知识点、Android源码解析、设计模式汇总、Gradle知识点、常见算法题汇总。)
[外链图片转存中…(img-lPXBF3lJ-1714529919504)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。