赞
踩
前几篇,分享的都是如何白嫖国内外各大厂商的免费大模型服务~
有小伙伴问,如果我想在本地搞个大模型玩玩,有什么解决方案?
Ollama,它来了,专为在本地机器便捷部署和运行大模型而设计。
也许是目前最便捷的大模型部署和运行工具,配合Open WebUI,人人都可以拥有大模型自由。
今天,就带着大家实操一番,从 0 到 1 玩转 Ollama。
相对简单,根据你电脑的不同操作系统,下载对应的客户端软件,并安装:
推荐大家使用 Linux 服务器进行部署,毕竟大模型的对机器配置还是有一定要求。
step 1: 下载 & 安装
命令行一键下载和安装:
curl -fsSL https://ollama.com/install.sh | sh
如果没有报错,它会提示你 ollama 的默认配置文件地址:
Created symlink /etc/systemd/system/default.target.wants/ollama.service → /etc/systemd/system/ollama.service.
接下来,我们采用如下命令查看下服务状态, running 就没问题了:
systemctl status ollama
查看是否安装成功,出现版本号说明安装成功:
ollama -v
step 2: 服务启动
浏览器中打开:http://your_ip:11434/
,如果出现 Ollama is running
,说明服务已经成功运行。
step 3: 修改配置(可选) 如果有个性化需求,需要修改默认配置:
配置文件在:
/etc/systemd/system/ollama.service
,采用任意编辑器打开,推荐vim
[Service]
Environment="OLLAMA_HOST=0.0.0.0"
[Service]
Environment="OLLAMA_MODELS=/data/ollama/models"
不同操作系统,模型默认存放在:
macOS: ~/.ollama/models
Linux: /usr/share/ollama/.ollama/models
Windows: C:\Users\xxx\.ollama\models
Environment="CUDA_VISIBLE_DEVICES=0,1"
4.配置修改后,需要重启 ollama
systemctl daemon-reload
systemctl restart ollama
注意:上面两条指令通常需要同时使用:只要你修改了任意服务的配置文件(如 .service 文件),都需要运行systemctl daemon-reload
使更改生效。
我们也介绍下 Docker 部署,无需配置各种环境,相对小白来说,更加友好。
step 1: 一键安装
如果是一台没有 GPU 的轻量级服务器:
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always ollama/ollama
简单介绍下这个命令的参数:
宿主机上的数据卷 volume 通常在 /var/lib/docker/volumes/
,可以采用如下命令进行查看:
如果拥有 Nvidia-GPU:
docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
安装成功后,注意要给服务器打开 11434 端口的防火墙,然后浏览器打开 http://your_ip:11434/
,如果出现 Ollama is running
,说明服务已经成功运行。
step 2: 进入容器
如何进入容器中执行指令呢?
docker exec -it ollama /bin/bash
参数说明:
执行后,你将进入容器的命令行,和你本地机器上使用没有任何区别。
如果不想进入容器,当然也可以参考如下指令,一键运行容器中的模型:
docker exec -it ollama ollama run qwen2:0.5b
如果一段时间内没有请求,模型会自动下线。
Ollama 都有哪些指令?
终端输入 ollama
:
我们翻译过来,和 docker 命令非常类似:
类似 Docker 托管镜像的 Docker Hub,Ollama 也有个 Library 托管支持的大模型。
传送门:https://ollama.com/library
从0.5B 到 236B,各种模型应有尽有,大家可以根据自己的机器配置,选用合适的模型。
同时,官方也贴心地给出了不同 RAM 推荐的模型大小,以及命令:
注:至少确保,8GB的 RAM 用于运行 7B 模型,16GB 用于运行 13B 模型,32GB 用于运行 33B 模型。这些模型需经过量化。
因为我的是一台没有 GPU 的轻量级服务器,所以跑一个 0.5B 的 qwen 模型,给大家做下演示:
如果要使用的模型不在 Ollama 模型库怎么办?
GGUF 是由 llama.cpp 定义的一种高效存储和交换大模型预训练结果的二进制格式。
Ollama 支持采用 Modelfile 文件中导入 GGUF 模型。
下面我们以本地的 llama3 举例,详细介绍下实操流程:
step 1: 新建一个文件名为 Modelfile 的文件,然后在其中指定 llama3 模型路径:
FROM /root/models/xxx/Llama3-FP16.gguf
step 2: 创建模型
ollama create llama3 -f Modelfile
step 3: 运行模型
ollama run llama3
终端出现 >>
,开启和 Ollama 的对话旅程吧~
下面是几个常用案例:
多行输入:用"""包裹
多模态模型:文本 + 图片地址
$ ollama run llama3 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine.
Ollama 本身不支持 PyTorch or Safetensors 类型,不过可以通过 llama.cpp
进行转换、量化处理成 GGUF 格式,然后再给 Ollama 使用。
关于 llama.cpp
的使用,小伙伴可以前往官方仓库:https://github.com/ggerganov/llama.cpp。下载后需要编译使用,成功后会在目录下生成三个可执行文件:
不过我们只能需要用到它的模型转换功能,还是以 llama3 举例:首先安装项目依赖,然后调用 convert.py
实现模型转换:
pip install -r requirements.txt
python convert.py /root/xxx/Llama3-Chinese-8B-Instruct/ --outtype f16 --vocab-type bpe --outfile ./models/Llama3-FP16.gguf
刚才我们介绍了 Modelfile,其中我们还可以自定义提示词,实现更个性化的智能体。
假设现在你从模型库下载了一个 llama3:
ollama pull llama3
然后我们新建一个 Modelfile,其中输入:
Ollama 原生支持 FP16 or FP32 模型的进一步量化,支持的量化方法包括:
在编写好 Modelfile 文件后,创建模型时加入 -q
标志:
FROM /path/to/my/gemma/f16/model
ollama create -q Q4_K_M mymodel -f Modelfile
除了本地运行模型以外,还可以把模型部署成 API 服务。
执行下述指令,可以一键启动 REST API 服务:
ollama serve
下面介绍两个常用示例:
1、生成回复
2、模型对话
更多参数和使用,可参考 API 文档:https://github.com/ollama/ollama/blob/main/docs/api.md
OneAPI 也支持 Ollama 模型,我们只需在 OneAPI 中为 Ollama 添加一个渠道。
创建好之后,点击 测试
一下,右上角出现提示,说明已经配置成功,接下来就可以采用 OpenAI 的方式调用了。
Open WebUI 是一个可扩展的自托管 WebUI,前身就是 Ollama WebUI,为 Ollama 提供一个可视化界面,可以完全离线运行,支持 Ollama 和兼容 OpenAI 的 API。
声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。