赞
踩
为了让我们生成的迁移图在风格上与风格图片尽可能相似,在内容上尽可能与内容图相似,我们这里引入两种损失:内容损失函数和风格损失函数。
两张图片在内容上相似,不能仅仅靠简单的纯像素比较。
CNN具有抽象和理解图像的能力,因此可以考虑将各个卷积层的输出作为图像的内容。我们看一下VGG网络:
它包含有多个卷积层,我们用conv4_2这一层输出的特征图计算内容损失,怎样计算呢? 它就是将内容图片塞进这个网络,接着将随机产生的噪音也塞进网络,然后计算它们到这一层的特征图,最后逐像素点计算差值。
注意:这里的VGG网络是不进行参数更新的。我们只是选用已经训练好的模型。
风格是一个很难说清楚的概念,可能是笔触、纹理、结构、布局、用色等等
这里我们使用卷积层各个特征图之间的互相关作为图像的风格,以conv1_1
为例
Gram
矩阵计算互相关 Gram
矩阵的计算如下,如果有64个特征图,那么Gram
矩阵的大小便是 ,第 行第 列的值表示第 个特征图和第 个特征图之间的互相关,用内积计算
风格损失函数定义如下,对多个卷积层的风格表示差异进行加权。
这里我们使用conv1_1
、conv2_1
、conv3_1
、conv4_1
、conv5_1
五个卷积层,进行风格损失函数的计算,不同的权重会导致不同的迁移效果
总的损失函数即内容损失函数和风格损失函数的加权,不同的权重会导致不同的迁移效果
在之前介绍的图像风格迁移中,我们根据内容图片和风格图片优化输入图片,使得内容损失函数和风格损失函数尽可能小
和DeepDream一样,属于网络参数不变,根据损失函数调整输入数据,因此每生成一张图片都相当于训练一个模型,需要很长时间。
使用快速图像风格迁移可大大缩短生成一张迁移图片所需的时间,其模型结构如下,包括转换网络和损失网络
风格图片是固定的,而内容图片是可变的输入,因此以上模型用于将任意图片快速转换为指定风格的图片
经过训练后,转换网络所生成的迁移图片,在内容上和输入的内容图片相似,在风格上和指定的风格图片相似
进行推断时,仅使用转换网络,输入内容图片,即可得到对应的迁移图片
如果有多个风格图片,对每个风格分别训练一个模型即可。。
白话讲:就是让损失网络不动,我们训练转换网络,让网络达到这样的效果:随便给一张图片,都能转移成ys所对应风格的图片。这里我们需要大量的图片x, 将不同的x都能训练成ys所具有的风格。 训练好后,将模型保存,我们下次使用的时候,就不需要再经过损失网络,我们只需将待转移风格的图片塞进转换网络,它将能生成所对应的风格图片。
用代码实现快速风格迁移:
- import tensorflow as tf
- import numpy as np
- import cv2
- from imageio import imread, imsave
- import scipy.io
- import os
- import glob
- from tqdm import tqdm
- import matplotlib.pyplot as plt
- import cv2
-
- # 进行图片的统一化处理
- style_images = glob.glob('styles/*.jpg')
-
-
- # 加载内容图片,去掉黑白图片,处理成指定大小,暂时不进行归一化,像素值范围为0至255之间
- def resize_and_crop(image, image_size):
- h = image.shape[0] # 获取高
- w = image.shape[1] # 获取宽
- # 也就是截取中间的正方形
- if h > w:
- # 高大于宽,则高要截取一部分
- image = image[h // 2 - w // 2: h // 2 + w // 2, :, :]
- else:
- image = image[:, w // 2 - h // 2: w // 2 + h // 2, :]
- image = cv2.resize(image, (image_size, image_size))
- return image
-
- X_data = []
- image_size = 256
- # 加载训练集
- paths = glob.glob('train2014/*.jpg')
- for i in tqdm(range(len(paths))):
- path = paths[i]
- image = imread(path)
- if len(image.shape) < 3: # 如果不是彩色,则不要
- continue
-
- X_data.append(resize_and_crop(image, image_size)) # 将符合条件的图片进行放缩
- X_data = np.array(X_data)
- print(X_data.shape) # 82216张
-
- # 加载matlab训练好的模型
- vgg = scipy.io.loadmat('imagenet-vgg-verydeep-19.mat')
- vgg_layers = vgg['layers']
- def vgg_endpoints(inputs, reuse=None):
- with tf.variable_scope('endpoints', reuse=reuse):
- def _weights(layer, expected_layer_name):
- W = vgg_layers[0][layer][0][0][2][0][0]
- b = vgg_layers[0][layer][0][0][2][0][1]
- layer_name = vgg_layers[0][layer][0][0][0][0]
- assert layer_name == expected_layer_name
- return W, b
-
- def _conv2d_relu(prev_layer, layer, layer_name):
- W, b = _weights(layer, layer_name)
- W = tf.constant(W)
- b = tf.constant(np.reshape(b, (b.size)))
- return tf.nn.relu(tf.nn.conv2d(prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b)
-
- def _avgpool(prev_layer):
- return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
-
- graph = {}
- graph['conv1_1'] = _conv2d_relu(inputs, 0, 'conv1_1')
- graph['conv1_2'] = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2')
- graph['avgpool1'] = _avgpool(graph['conv1_2'])
- graph['conv2_1'] = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1')
- graph['conv2_2'] = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2')
- graph['avgpool2'] = _avgpool(graph['conv2_2'])
- graph['conv3_1'] = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1')
- graph['conv3_2'] = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2')
- graph['conv3_3'] = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3')
- graph['conv3_4'] = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4')
- graph['avgpool3'] = _avgpool(graph['conv3_4'])
- graph['conv4_1'] = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1')
- graph['conv4_2'] = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2')
- graph['conv4_3'] = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3')
- graph['conv4_4'] = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4')
- graph['avgpool4'] = _avgpool(graph['conv4_4'])
- graph['conv5_1'] = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1')
- graph['conv5_2'] = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2')
- graph['conv5_3'] = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3')
- graph['conv5_4'] = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4')
- graph['avgpool5'] = _avgpool(graph['conv5_4'])
-
- return graph
-
-
-
- # 选择一张风格图,减去通道颜色均值后,得到风格图片在vgg19各个层的输出值,
- # 计算四个风格层对应的Gram矩阵
- style_index = 1 # 读取第二张风格图 这样训练的就是生成第二张风格的网络
- X_style_data = resize_and_crop(imread(style_images[style_index]), image_size)
- X_style_data = np.expand_dims(X_style_data, 0) # 讲风格图扩展一维,因为网络的输入为四维
- print(X_style_data.shape)
-
- MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))
-
- X_style = tf.placeholder(dtype=tf.float32, shape=X_style_data.shape, name='X_style')
- style_endpoints = vgg_endpoints(X_style - MEAN_VALUES)
- # 选下面四层计算我们的风格
- STYLE_LAYERS = ['conv1_2', 'conv2_2', 'conv3_3', 'conv4_3']
- style_features = {}
-
- sess = tf.Session()
- for layer_name in STYLE_LAYERS:
- # 输入层的名字,得到各层的输出
- features = sess.run(style_endpoints[layer_name], feed_dict={X_style: X_style_data})
- features = np.reshape(features, (-1, features.shape[3]))
- # 计算Gram矩阵
- gram = np.matmul(features.T, features) / features.size
- style_features[layer_name] = gram
-
-
- # 转换网络的定义
- batch_size = 4
- X = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3], name='X')
- k_initializer = tf.truncated_normal_initializer(0, 0.1) # 初始化一张图,均值0,方差0.1
-
-
- def relu(x):
- return tf.nn.relu(x)
-
-
- def conv2d(inputs, filters, kernel_size, strides):
- p = int(kernel_size / 2)
-
- # reflect反射填充边缘信息。。即就是将边缘像素反射填充 上下分别反射填充p个像素,左右也分别反射填充p个像素
- # same是以补零的方式进行填充
- # valid是以丢弃的方式适应卷积核
- h0 = tf.pad(inputs, [[0, 0], [p, p], [p, p], [0, 0]], mode='reflect') # 等于就是把图形放大了二倍
- return tf.layers.conv2d(inputs=h0, filters=filters, kernel_size=kernel_size, strides=strides, padding='valid',
- kernel_initializer=k_initializer)
-
-
- def deconv2d(inputs, filters, kernel_size, strides):
- shape = tf.shape(inputs)
- height, width = shape[1], shape[2]
- # 这里将图像宽和高变为原来的2*strides倍
- h0 = tf.image.resize_images(inputs, [height * strides * 2, width * strides * 2],
- tf.image.ResizeMethod.NEAREST_NEIGHBOR)
- return conv2d(h0, filters, kernel_size, strides) # 再卷积的时候,还是变成了原来的2倍
-
- def instance_norm(inputs):
- # 将每张图片进行归一化
- return tf.contrib.layers.instance_norm(inputs)
-
- # 定义我们的残差块
- def residual(inputs, filters, kernel_size):
- h0 = relu(conv2d(inputs, filters, kernel_size, 1))
- h0 = conv2d(h0, filters, kernel_size, 1)
- return tf.add(inputs, h0)
-
-
- with tf.variable_scope('transformer', reuse=None):
- h0 = tf.pad(X - MEAN_VALUES, [[0, 0], [10, 10], [10, 10], [0, 0]], mode='reflect')
- h0 = relu(instance_norm(conv2d(h0, 32, 9, 1)))
- h0 = relu(instance_norm(conv2d(h0, 64, 3, 2)))
- h0 = relu(instance_norm(conv2d(h0, 128, 3, 2)))
-
- # 这里紧接着连五个残差块
- for i in range(5):
- h0 = residual(h0, 128, 3)
-
- h0 = relu(instance_norm(deconv2d(h0, 64, 3, 2)))
- h0 = relu(instance_norm(deconv2d(h0, 32, 3, 2)))
- h0 = tf.nn.tanh(instance_norm(conv2d(h0, 3, 9, 1)))
- h0 = (h0 + 1) / 2 * 255.
- shape = tf.shape(h0)
- g = tf.slice(h0, [0, 10, 10, 0], [-1, shape[1] - 20, shape[2] - 20, -1], name='g')
-
-
- # 将转换网络的输出即迁移图片,以及原始内容图片都输入到vgg19,
- # 得到各自对应层的输出,计算内容损失函数
- CONTENT_LAYER = 'conv3_3'
- content_endpoints = vgg_endpoints(X - MEAN_VALUES, True)
- g_endpoints = vgg_endpoints(g - MEAN_VALUES, True)
-
- def get_content_loss(endpoints_x, endpoints_y, layer_name):
- x = endpoints_x[layer_name]
- y = endpoints_y[layer_name]
- return 2 * tf.nn.l2_loss(x - y) / tf.to_float(tf.size(x))
-
- content_loss = get_content_loss(content_endpoints, g_endpoints, CONTENT_LAYER)
-
-
- # 根据迁移图片和风格图片在指定风格层的输出,计算风格损失函数
- style_loss = []
- for layer_name in STYLE_LAYERS:
- layer = g_endpoints[layer_name]
- shape = tf.shape(layer)
- bs, height, width, channel = shape[0], shape[1], shape[2], shape[3]
-
- features = tf.reshape(layer, (bs, height * width, channel))
- gram = tf.matmul(tf.transpose(features, (0, 2, 1)), features) / tf.to_float(height * width * channel)
-
- style_gram = style_features[layer_name]
- style_loss.append(2 * tf.nn.l2_loss(gram - style_gram) / tf.to_float(tf.size(layer)))
-
- style_loss = tf.reduce_sum(style_loss)
-
- # 计算全变差正则,得到总的损失函数
- def get_total_variation_loss(inputs):
- h = inputs[:, :-1, :, :] - inputs[:, 1:, :, :]
- w = inputs[:, :, :-1, :] - inputs[:, :, 1:, :]
- return tf.nn.l2_loss(h) / tf.to_float(tf.size(h)) + tf.nn.l2_loss(w) / tf.to_float(tf.size(w))
-
- total_variation_loss = get_total_variation_loss(g)
-
- content_weight = 1
- style_weight = 250
- total_variation_weight = 0.01
-
- loss = content_weight * content_loss + style_weight * style_loss + total_variation_weight * total_variation_loss
-
-
- # 定义优化器,通过调整转换网络中的参数降低总损失
- vars_t = [var for var in tf.trainable_variables() if var.name.startswith('transformer')]
- optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss, var_list=vars_t)
-
- # 训练模型,每轮训练结束后,用一张测试图片进行测试,并且将一些tensor的值写入
- # events文件,便于使用tensorboard查看
- style_name = style_images[style_index]
- style_name = style_name[style_name.find('/') + 1:].rstrip('.jpg')
- OUTPUT_DIR = 'samples_%s' % style_name
- if not os.path.exists(OUTPUT_DIR):
- os.mkdir(OUTPUT_DIR)
-
- tf.summary.scalar('losses/content_loss', content_loss)
- tf.summary.scalar('losses/style_loss', style_loss)
- tf.summary.scalar('losses/total_variation_loss', total_variation_loss)
- tf.summary.scalar('losses/loss', loss)
- tf.summary.scalar('weighted_losses/weighted_content_loss', content_weight * content_loss)
- tf.summary.scalar('weighted_losses/weighted_style_loss', style_weight * style_loss)
- tf.summary.scalar('weighted_losses/weighted_total_variation_loss', total_variation_weight * total_variation_loss)
- tf.summary.image('transformed', g)
- tf.summary.image('origin', X)
- summary = tf.summary.merge_all()
- writer = tf.summary.FileWriter(OUTPUT_DIR)
-
- sess.run(tf.global_variables_initializer())
- losses = []
- epochs = 2
-
- X_sample = imread('sjtu.jpg')
- h_sample = X_sample.shape[0]
- w_sample = X_sample.shape[1]
-
- for e in range(epochs):
- data_index = np.arange(X_data.shape[0])
- np.random.shuffle(data_index)
- X_data = X_data[data_index]
-
- for i in tqdm(range(X_data.shape[0] // batch_size)):
- X_batch = X_data[i * batch_size: i * batch_size + batch_size]
- ls_, _ = sess.run([loss, optimizer], feed_dict={X: X_batch})
- losses.append(ls_)
-
- if i > 0 and i % 20 == 0:
- writer.add_summary(sess.run(summary, feed_dict={X: X_batch}), e * X_data.shape[0] // batch_size + i)
- writer.flush()
-
- print('Epoch %d Loss %f' % (e, np.mean(losses)))
- losses = []
-
- gen_img = sess.run(g, feed_dict={X: [X_sample]})[0]
- gen_img = np.clip(gen_img, 0, 255)
- result = np.zeros((h_sample, w_sample * 2, 3))
- result[:, :w_sample, :] = X_sample / 255.
- result[:, w_sample:, :] = gen_img[:h_sample, :w_sample, :] / 255.
- plt.axis('off')
- plt.imshow(result)
- plt.show()
- imsave(os.path.join(OUTPUT_DIR, 'sample_%d.jpg' % e), result)
-
- # 保存模型
- saver = tf.train.Saver()
- saver.save(sess, os.path.join(OUTPUT_DIR, 'fast_style_transfer'))
-
-
-
可以针对不同的风格图训练我们的模型。。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。