当前位置:   article > 正文

[工程部署]在RK3588上部署OCR(文字检测识别)(DBNet+CRNN)_rk3588部署ppocr

rk3588部署ppocr

硬件平台:

1、firefly安装Ubuntu系统的RK3588;

2、安装Windows系统的电脑一台,其上安装Ubuntu18.04系统虚拟机。

参考手册:《00-Rockchip_RKNPU_User_Guide_RKNN_API_V1.3.0_CN》

《RKNN Toolkit Lite2 用户使用指南》

1、文字检测

项目地址:

GitHub - WenmuZhou/PytorchOCR: 基于Pytorch的OCR工具库,支持常用的文字检测和识别算法

DBNet(Dynamic-Link Bi-directional Network)是一种用于文本检测的深度学习模型。该模型于2019年由Minghui Liao等人提出,并在文本检测领域取得了显著的成果。DBNet的设计目标是在保持高精度的同时,提高文本检测的效率。传统的文本检测模型通常使用单向的横向连接或纵向连接来处理文本实例。然而,这种单向连接可能导致信息的不完整传递或信息冗余,影响了检测性能和速度。

为了解决这些问题,DBNet引入了双向动态连接机制,允许横向和纵向两个方向上的信息流动。具体来说,DBNet由两个关键组成部分构成:

(1) Bi-directional FFM(Feature Fusion Module):这是DBNet的核心组件之一。它包括横向和纵向两个方向的子模块。在横向子模块中,DBNet通过可变形卷积(deformable convolution)从不同尺度的特征图中提取并融合文本实例的特征。而在纵向子模块中,DBNet使用自适应的特征选择机制,动态选择最具有代表性的特征。这些子模块的组合使得文本实例的特征能够全面而高效地进行建模。

(2) Aggregation Decoder:这是DBNet的另一个重要组件,用于从特征图中生成文本实例的边界框和对应的文本分数。该解码器结合了横向和纵向的特征,通过逐步聚合来预测文本的位置和形状。由于使用了双向动态连接,解码器能够更准确地还原文本实例的形态。

DBNet的训练过程包括前向传播和反向传播。在前向传播中,DBNet将图像输入网络,经过一系列卷积、特征融合和解码操作,得到文本检测的结果。然后,通过计算预测结果和真实标签之间的损失函数,使用反向传播算法来更新网络参数,从而不断优化模型的性能。

DBNet在文本检测任务中取得了非常好的效果。其双向动态连接机制允许更好地利用横向和纵向的信息,提高了文本检测的准确性和鲁棒性。此外,相比传统的文本检测模型,DBNet在保持高精度的情况下,大幅提升了检测速度,使得它在实际应用中更具可用性和实用性。因此,DBNet在文字检测、自动化办公、图像识别等领域都具有广泛的应用前景。论文地址:https://arxiv.org/abs/1911.08947

图1. DBNet网络结构

2、文字识别

项目地址:

GitHub - WenmuZhou/PytorchOCR: 基于Pytorch的OCR工具库,支持常用的文字检测和识别算法

CRNN(Convolutional Recurrent Neural Network)是一种深度学习模型,结合了卷积神经网络(CNN)和循环神经网络(RNN)的优势,广泛应用于图像文本识别(OCR)任务。CRNN模型于2015年由Baoguang Shi等人首次提出,并在OCR领域取得了显著的突破。

CRNN的设计思想是将卷积神经网络用于图像的特征提取,并利用循环神经网络来对序列建模,从而使得CRNN能够直接从图像级别到序列级别进行端到端的学习。

CRNN模型通常由以下几个部分组成:

(1) 卷积层(Convolutional Layers):CRNN利用多个卷积层来提取图像中的局部特征。这些卷积层可以学习不同层次的图像表示,从低级特征(如边缘和纹理)到高级特征(如形状和模式)。

(2) RNN层(Recurrent Layers):在卷积层后面,CRNN采用RNN层来处理序列数据。RNN能够捕捉序列的上下文信息,因此对于OCR任务而言,它可以有效地处理不同长度的文本序列。

(3) 转录层(Transcription Layer):在RNN层之后,CRNN使用转录层来将RNN输出映射到字符类别。这通常是一个全连接层,将RNN输出映射到预定义的字符集合,从而实现对文本的识别。

CRNN的训练过程包括两个主要步骤:前向传播和反向传播。在前向传播中,CRNN将图像输入模型,经过卷积和循环层,最终得到文本序列的预测。然后,通过计算预测结果和真实标签之间的损失函数,使用反向传播算法来更新网络参数,从而使得模型的预测结果逐渐接近真实标签。

CRNN在OCR领域的应用广泛,能够识别不同尺寸、字体、颜色和背景的文本。它在识别长文本序列方面表现优秀,并且由于端到端的设计,避免了传统OCR系统中复杂的流水线处理。因此,CRNN在很多实际场景中都取得了很好的效果,如车牌识别、文字检测和手写体识别等。

总结来说,CRNN是一种将CNN和RNN结合起来的深度学习模型,用于图像文本识别任务。其端到端的设计、优秀的序列建模能力和在OCR领域的广泛应用,使得CRNN成为了一种重要的OCR模型,为自动化文本处理和识别带来了巨大的便利。论文地址:https://arxiv.org/abs/1507.05717

图2. CRNN结构

环境搭建

rknn-toolkit以及rknpu_sdk环境搭建

(手把手)rknn-toolkit以及rknpu_sdk环境搭建--以rk3588为例_warren@伟_的博客-CSDN博客

模型的导出与验证

文字检测

导出onnx模型

  1. '''
  2. Author: warren
  3. Date: 2023-06-07 14:52:27
  4. LastEditors: warren
  5. LastEditTime: 2023-06-12 15:20:28
  6. FilePath: /warren/VanillaNet1/export_onnx.py
  7. Description: export onnx model
  8. Copyright (c) 2023 by ${git_name_email}, All Rights Reserved.
  9. '''
  10. #!/usr/bin/env python3
  11. import torch
  12. from torchocr.networks import build_model
  13. MODEL_PATH='./model/det_db_mbv3_new.pth'
  14. DEVICE='cuda:0' if torch.cuda.is_available() else 'cpu'
  15. print("-----------------------devices",DEVICE)
  16. class DetInfer:
  17. def __init__(self, model_path):
  18. ckpt = torch.load(model_path, map_location=DEVICE)
  19. cfg = ckpt['cfg']
  20. self.model = build_model(cfg['model'])
  21. state_dict = {}
  22. for k, v in ckpt['state_dict'].items():
  23. state_dict[k.replace('module.', '')] = v
  24. self.model.load_state_dict(state_dict)
  25. self.device = torch.device(DEVICE)
  26. self.model.to(self.device)
  27. self.model.eval()
  28. checkpoint = torch.load(MODEL_PATH, map_location=DEVICE)
  29. # Prepare input tensor
  30. input = torch.randn(1, 3, 640, 640, requires_grad=False).float().to(torch.device(DEVICE))
  31. # Export the torch model as onnx
  32. print("-------------------export")
  33. torch.onnx.export(self.model,
  34. input,
  35. 'detect_model_small.onnx', # name of the exported onnx model
  36. export_params=True,
  37. opset_version=12,
  38. do_constant_folding=False)
  39. # Load the pretrained model and export it as onnx
  40. model = DetInfer(MODEL_PATH)

验证

  1. import numpy as np
  2. import cv2
  3. import torch
  4. from torchvision import transforms
  5. # from label_convert import CTCLabelConverter
  6. import cv2
  7. import numpy as np
  8. import pyclipper
  9. from shapely.geometry import Polygon
  10. import onnxruntime
  11. class DBPostProcess():
  12. def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=2):
  13. self.min_size = 3
  14. self.thresh = thresh
  15. self.box_thresh = box_thresh
  16. self.max_candidates = max_candidates
  17. self.unclip_ratio = unclip_ratio
  18. def __call__(self, pred, h_w_list, is_output_polygon=False):
  19. '''
  20. batch: (image, polygons, ignore_tags
  21. h_w_list: 包含[h,w]的数组
  22. pred:
  23. binary: text region segmentation map, with shape (N, 1,H, W)
  24. '''
  25. pred = pred[:, 0, :, :]
  26. segmentation = self.binarize(pred)
  27. boxes_batch = []
  28. scores_batch = []
  29. for batch_index in range(pred.shape[0]):
  30. height, width = h_w_list[batch_index]
  31. boxes, scores = self.post_p(pred[batch_index], segmentation[batch_index], width, height,
  32. is_output_polygon=is_output_polygon)
  33. boxes_batch.append(boxes)
  34. scores_batch.append(scores)
  35. return boxes_batch, scores_batch
  36. def binarize(self, pred):
  37. return pred > self.thresh
  38. def post_p(self, pred, bitmap, dest_width, dest_height, is_output_polygon=False):
  39. '''
  40. _bitmap: single map with shape (H, W),
  41. whose values are binarized as {0, 1}
  42. '''
  43. height, width = pred.shape
  44. boxes = []
  45. new_scores = []
  46. # bitmap = bitmap.cpu().numpy()
  47. if cv2.__version__.startswith('3'):
  48. _, contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
  49. if cv2.__version__.startswith('4'):
  50. contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
  51. for contour in contours[:self.max_candidates]:
  52. epsilon = 0.005 * cv2.arcLength(contour, True)
  53. approx = cv2.approxPolyDP(contour, epsilon, True)
  54. points = approx.reshape((-1, 2))
  55. if points.shape[0] < 4:
  56. continue
  57. score = self.box_score_fast(pred, contour.squeeze(1))
  58. if self.box_thresh > score:
  59. continue
  60. if points.shape[0] > 2:
  61. box = self.unclip(points, unclip_ratio=self.unclip_ratio)
  62. if len(box) > 1:
  63. continue
  64. else:
  65. continue
  66. four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
  67. if sside < self.min_size + 2:
  68. continue
  69. if not isinstance(dest_width, int):
  70. dest_width = dest_width.item()
  71. dest_height = dest_height.item()
  72. if not is_output_polygon:
  73. box = np.array(four_point_box)
  74. else:
  75. box = box.reshape(-1, 2)
  76. box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
  77. box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
  78. boxes.append(box)
  79. new_scores.append(score)
  80. return boxes, new_scores
  81. def unclip(self, box, unclip_ratio=1.5):
  82. poly = Polygon(box)
  83. distance = poly.area * unclip_ratio / poly.length
  84. offset = pyclipper.PyclipperOffset()
  85. offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
  86. expanded = np.array(offset.Execute(distance))
  87. return expanded
  88. def get_mini_boxes(self, contour):
  89. bounding_box = cv2.minAreaRect(contour)
  90. points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
  91. index_1, index_2, index_3, index_4 = 0, 1, 2, 3
  92. if points[1][1] > points[0][1]:
  93. index_1 = 0
  94. index_4 = 1
  95. else:
  96. index_1 = 1
  97. index_4 = 0
  98. if points[3][1] > points[2][1]:
  99. index_2 = 2
  100. index_3 = 3
  101. else:
  102. index_2 = 3
  103. index_3 = 2
  104. box = [points[index_1], points[index_2], points[index_3], points[index_4]]
  105. return box, min(bounding_box[1])
  106. def box_score_fast(self, bitmap, _box):
  107. # bitmap = bitmap.detach().cpu().numpy()
  108. h, w = bitmap.shape[:2]
  109. box = _box.copy()
  110. xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
  111. xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
  112. ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
  113. ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
  114. mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
  115. box[:, 0] = box[:, 0] - xmin
  116. box[:, 1] = box[:, 1] - ymin
  117. cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
  118. return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
  119. def narrow_224_32(image, expected_size=(224,32)):
  120. ih, iw = image.shape[0:2]
  121. ew, eh = expected_size
  122. # scale = eh / ih
  123. scale = min((eh/ih),(ew/iw))
  124. # scale = eh / max(iw,ih)
  125. nh = int(ih * scale)
  126. nw = int(iw * scale)
  127. image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_CUBIC)
  128. top = 0
  129. bottom = eh - nh
  130. left = 0
  131. right = ew - nw
  132. new_img = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
  133. return image,new_img
  134. def draw_bbox(img_path, result, color=(0, 0, 255), thickness=2):
  135. import cv2
  136. if isinstance(img_path, str):
  137. img_path = cv2.imread(img_path)
  138. # img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB)
  139. img_path = img_path.copy()
  140. for point in result:
  141. point = point.astype(int)
  142. cv2.polylines(img_path, [point], True, color, thickness)
  143. return img_path
  144. if __name__ == '__main__':
  145. onnx_model = onnxruntime.InferenceSession("detect_model_small.onnx")
  146. input_name = onnx_model.get_inputs()[0].name
  147. # Set inputs
  148. img = cv2.imread('./pic/6.jpg')
  149. img0 , image= narrow_224_32(img,expected_size=(640,640))
  150. transform_totensor = transforms.ToTensor()
  151. tensor=transform_totensor(image)
  152. tensor_nor=transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
  153. tensor=tensor_nor(tensor)
  154. tensor = np.array(tensor,dtype=np.float32).reshape(1,3,640,640)
  155. post_proess = DBPostProcess()
  156. is_output_polygon = False
  157. #run
  158. outputs = onnx_model.run(None, {input_name:tensor})
  159. #post process
  160. feat_2 = torch.from_numpy(outputs[0])
  161. print(feat_2.size())
  162. box_list, score_list = post_proess(outputs[0], [image.shape[:2]], is_output_polygon=is_output_polygon)
  163. box_list, score_list = box_list[0], score_list[0]
  164. if len(box_list) > 0:
  165. idx = [x.sum() > 0 for x in box_list]
  166. box_list = [box_list[i] for i, v in enumerate(idx) if v]
  167. score_list = [score_list[i] for i, v in enumerate(idx) if v]
  168. else:
  169. box_list, score_list = [], []
  170. print("-----------------box list",box_list)
  171. img = draw_bbox(image, box_list)
  172. img = img[0:img0.shape[0],0:img0.shape[1]]
  173. print("============save pic")
  174. img1=np.array(img,dtype=np.uint8).reshape(640,640,3)
  175. cv2.imwrite("img.jpg",img1)
  176. cv2.waitKey()

文字识别

onnx模型导出

  1. #!/usr/bin/env python3
  2. import os
  3. import sys
  4. import pathlib
  5. # 将 torchocr路径加到python路径里
  6. __dir__ = pathlib.Path(os.path.abspath(__file__))
  7. import numpy as np
  8. sys.path.append(str(__dir__))
  9. sys.path.append(str(__dir__.parent.parent))
  10. import torch
  11. from torchocr.networks import build_model
  12. MODEL_PATH='./model/ch_rec_moblie_crnn_mbv3.pth'
  13. DEVICE='cuda:0' if torch.cuda.is_available() else 'cpu'
  14. print("-----------------------devices",DEVICE)
  15. class RecInfer:
  16. def __init__(self, model_path, batch_size=1):
  17. ckpt = torch.load(model_path, map_location=DEVICE)
  18. cfg = ckpt['cfg']
  19. self.model = build_model(cfg['model'])
  20. state_dict = {}
  21. for k, v in ckpt['state_dict'].items():
  22. state_dict[k.replace('module.', '')] = v
  23. self.model.load_state_dict(state_dict)
  24. self.batch_size = batch_size
  25. self.device = torch.device(DEVICE)
  26. self.model.to(self.device)
  27. self.model.eval()
  28. # Prepare input tensor
  29. input = torch.randn(1, 3, 32, 224, requires_grad=False).float().to(torch.device(DEVICE))
  30. # Export the torch model as onnx
  31. print("-------------------export")
  32. torch.onnx.export(self.model,
  33. input,
  34. 'rego_model_small.onnx',
  35. export_params=True,
  36. opset_version=12,
  37. do_constant_folding=False)
  38. # Load the pretrained model and export it as onnx
  39. model = RecInfer(MODEL_PATH)

验证

  1. import onnxruntime
  2. import numpy as np
  3. import cv2
  4. import torch
  5. DEVICE='cuda:0' if torch.cuda.is_available() else 'cpu'
  6. IMG_WIDTH=448
  7. ONNX_MODEL='./onnx_model/repvgg_s.onnx'
  8. LABEL_FILE='/root/autodl-tmp/warren/PytorchOCR_OLD/torchocr/datasets/alphabets/dict_text.txt'
  9. #ONNX_MODEL='./onnx_model/rego_model_small.onnx'
  10. #LABEL_FILE='/root/autodl-tmp/warren/PytorchOCR_OLD/torchocr/datasets/alphabets/ppocr_keys_v1.txt'
  11. PIC='./pic/img.jpg'
  12. class CTCLabelConverter(object):
  13. """ Convert between text-label and text-index """
  14. def __init__(self, character):
  15. # character (str): set of the possible characters.
  16. dict_character = []
  17. with open(character, "rb") as fin:
  18. lines = fin.readlines()
  19. for line in lines:
  20. line = line.decode('utf-8').strip("\n").strip("\r\n")
  21. dict_character += list(line)
  22. self.dict = {}
  23. for i, char in enumerate(dict_character):
  24. # NOTE: 0 is reserved for 'blank' token required by CTCLoss
  25. self.dict[char] = i + 1
  26. #TODO replace ‘ ’ with special symbol
  27. self.character = ['[blank]'] + dict_character+[' '] # dummy '[blank]' token for CTCLoss (index 0)
  28. def decode(self, preds, raw=False):
  29. """ convert text-index into text-label. """
  30. preds_idx = preds.argmax(axis=2)
  31. preds_prob = preds.max(axis=2)
  32. result_list = []
  33. for word, prob in zip(preds_idx, preds_prob):
  34. if raw:
  35. result_list.append((''.join([self.character[int(i)] for i in word]), prob))
  36. else:
  37. result = []
  38. conf = []
  39. for i, index in enumerate(word):
  40. if word[i] != 0 and (not (i > 0 and word[i - 1] == word[i])):
  41. result.append(self.character[int(index)])
  42. conf.append(prob[i])
  43. result_list.append((''.join(result), conf))
  44. return result_list
  45. def decode(preds, raw=False):
  46. """ convert text-index into text-label. """
  47. dict_character = []
  48. dict = {}
  49. character=LABEL_FILE
  50. with open(character, "rb") as fin:
  51. lines = fin.readlines()
  52. for line in lines:
  53. line = line.decode('utf-8').strip("\n").strip("\r\n")
  54. dict_character += list(line)
  55. for i, char in enumerate(dict_character):
  56. # NOTE: 0 is reserved for 'blank' token required by CTCLoss
  57. dict[char] = i + 1
  58. #TODO replace ‘ ’ with special symbol
  59. character = ['[blank]'] + dict_character+[' '] # dummy '[blank]' token for CTCLoss (index 0)
  60. preds_idx = preds.argmax(axis=2)
  61. preds_prob = preds.max(axis=2)
  62. result_list = []
  63. for word, prob in zip(preds_idx, preds_prob):
  64. if raw:
  65. result_list.append((''.join([character[int(i)] for i in word]), prob))
  66. else:
  67. result = []
  68. conf = []
  69. for i, index in enumerate(word):
  70. if word[i] != 0 and (not (i > 0 and word[i - 1] == word[i])):
  71. result.append(character[int(index)])
  72. conf.append(prob[i])
  73. result_list.append((''.join(result), conf))
  74. return result_list
  75. def width_pad_img(_img, _target_width, _pad_value=0):
  76. _height, _width, _channels = _img.shape
  77. to_return_img = np.ones([_height, _target_width, _channels], dtype=_img.dtype) * _pad_value
  78. to_return_img[:_height, :_width, :] = _img
  79. return to_return_img
  80. def resize_with_specific_height(_img):
  81. resize_ratio = 32 / _img.shape[0]
  82. return cv2.resize(_img, (0, 0), fx=resize_ratio, fy=resize_ratio, interpolation=cv2.INTER_LINEAR)
  83. def normalize_img(_img):
  84. return (_img.astype(np.float32) / 255 - 0.5) / 0.5
  85. if __name__ == '__main__':
  86. onnx_model = onnxruntime.InferenceSession(ONNX_MODEL)
  87. input_name = onnx_model.get_inputs()[0].name
  88. # Set inputs
  89. imgs = cv2.imread(PIC)
  90. if not isinstance(imgs,list):
  91. imgs = [imgs]
  92. imgs = [normalize_img(resize_with_specific_height(img)) for img in imgs]
  93. widths = np.array([img.shape[1] for img in imgs])
  94. idxs = np.argsort(widths)
  95. txts = []
  96. label_convert=CTCLabelConverter(LABEL_FILE)
  97. for idx in range(len(imgs)):
  98. batch_idxs = idxs[idx:min(len(imgs), idx+1)]
  99. batch_imgs = [width_pad_img(imgs[idx],IMG_WIDTH) for idx in batch_idxs]
  100. batch_imgs = np.stack(batch_imgs)
  101. print(batch_imgs.shape)
  102. tensor =batch_imgs.transpose([0,3, 1, 2]).astype(np.float32)
  103. out = onnx_model.run(None, {input_name:tensor})
  104. tensor_out = torch.tensor(out)
  105. tensor_out = torch.squeeze(tensor_out,dim=1)
  106. softmax_output = tensor_out.softmax(dim=2)
  107. print("---------------out shape is",softmax_output.shape)
  108. txts.extend([label_convert.decode(np.expand_dims(txt, 0)) for txt in softmax_output])
  109. idxs = np.argsort(idxs)
  110. out_txts = [txts[idx] for idx in idxs]
  111. import sys
  112. import codecs
  113. sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach())
  114. print(out_txts)

至此 导出验证成功

rk3588板端部署

转化为rknn模型

  1. from rknn.api import RKNN
  2. ONNX_MODEL = 'xxx.onnx'
  3. RKNN_MODEL = 'xxxx.rknn'
  4. DATASET = './dataset.txt'
  5. if __name__ == '__main__':
  6.     # Create RKNN object
  7.     rknn = RKNN(verbose=True)
  8.     # pre-process config
  9.     print('--> Config model')
  10.     ret=rknn.config(mean_values=[[0, 0, 0]], std_values=[[0, 0, 0]],target_platform='rk3588')  #wzw
  11.     if ret != 0:
  12.         print('config model failed!')
  13.         exit(ret)
  14.     print('done')
  15.     # Load ONNX model
  16.     print('--> Loading model')
  17.     ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['output', '345', '346'])  
  18.     if ret != 0:
  19.         print('Load model failed!')
  20.         exit(ret)
  21.     print('done')
  22.     # Build model
  23.     print('--> Building model')
  24.     ret = rknn.build(do_quantization=True, dataset=DATASET)
  25.     #ret = rknn.build(do_quantization=False)
  26.     if ret != 0:
  27.         print('Build model failed!')
  28.         exit(ret)
  29.     print('done')
  30.     # Export RKNN model
  31.     print('--> Export rknn model')
  32.     ret = rknn.export_rknn(RKNN_MODEL)
  33.     if ret != 0:
  34.         print('Export rknn model failed!')
  35.         exit(ret)
  36.     print('done')
  37.     #release rknn
  38.     rknn.release()

使用pyqt进行开发

PyQt软件设计

使用pyqt进行开发,ui界面如图所示

UI

6. 基于PYQT的ui界面

该界面包含了三个功能按钮,其中包裹一个选择静态图片,一个使用相机,一个检测按钮,TextEdit用于显示识别结果,label用于显示处理完成后的图片。

软件流程图如下:

总体目录参照

下面依次介绍图片检测的相关代码:

  1. import platform
  2. import sys
  3. import cv2
  4. import numpy as np
  5. import torch
  6. import pyclipper
  7. from shapely.geometry import Polygon
  8. from torchvision import transforms
  9. import time
  10. import os
  11. import glob
  12. import threading
  13. from PyQt5.QtGui import *
  14. from PyQt5.QtWidgets import *
  15. from PyQt5.QtCore import *
  16. import platform
  17. from rknnlite.api import RKNNLite
  18. import os
  19. os.environ.pop("QT_QPA_PLATFORM_PLUGIN_PATH")
  20. DETECT_MODEL = './model/model_small.rknn'
  21. REGO_MODEL='./model/repvgg_s.rknn'
  22. LABEL_FILE='./dict/dict_text.txt'
  23. LABEL_SIZE_PRIVIOUS=0
  24. LABEL_SIZE_LATTER=0
  25. # 文件夹路径
  26. folder_path = './crop_pic'
  27. # 使用 glob 来获取所有图片文件的路径
  28. image_files = glob.glob(os.path.join(folder_path, '*.png')) + glob.glob(os.path.join(folder_path, '*.jpg'))
  29. def resize_img_self(image,reszie_size=(0,0)):
  30. ih,iw=image.shape[0:2]
  31. ew,eh=reszie_size
  32. scale=eh/ih
  33. width=int(iw*scale)
  34. height=int(ih*scale)
  35. if height!=eh:
  36. height=eh
  37. image=cv2.resize(image,(width,height),interpolation=cv2.INTER_LINEAR)
  38. top = 0
  39. bottom = 0
  40. left = 0
  41. right = ew-width
  42. new_img = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
  43. #print("new image shape",new_img.shape)
  44. return new_img
  45. def narrow_224_32(image, expected_size=(224,32)):
  46. ih, iw = image.shape[0:2]
  47. ew, eh = expected_size
  48. # scale = eh / ih
  49. scale = min((eh/ih),(ew/iw))
  50. # scale = eh / max(iw,ih)
  51. nh = int(ih * scale)
  52. nw = int(iw * scale)
  53. image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_CUBIC)
  54. top = 0
  55. bottom = eh - nh
  56. left = 0
  57. right = ew - nw
  58. new_img = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))
  59. return image,new_img
  60. def draw_bbox(img_path, result, color=(0, 0, 255), thickness=2):
  61. import cv2
  62. if isinstance(img_path, str):
  63. img_path = cv2.imread(img_path)
  64. # img_path = cv2.cvtColor(img_path, cv2.COLOR_BGR2RGB)
  65. img_path = img_path.copy()
  66. for point in result:
  67. point = point.astype(int)
  68. cv2.polylines(img_path, [point], True, color, thickness)
  69. return img_path
  70. def delay_milliseconds(milliseconds):
  71. seconds = milliseconds / 1000.0
  72. time.sleep(seconds)
  73. """ Convert between text-label and text-index """
  74. class CTCLabelConverter(object):
  75. def __init__(self, character):
  76. # character (str): set of the possible characters.
  77. dict_character = []
  78. with open(character, "rb") as fin:
  79. lines = fin.readlines()
  80. for line in lines:
  81. line = line.decode('utf-8').strip("\n").strip("\r\n")
  82. dict_character += list(line)
  83. self.dict = {}
  84. for i, char in enumerate(dict_character):
  85. # NOTE: 0 is reserved for 'blank' token required by CTCLoss
  86. self.dict[char] = i + 1
  87. #TODO replace ‘ ’ with special symbol
  88. self.character = ['[blank]'] + dict_character+[' '] # dummy '[blank]' token for CTCLoss (index 0)
  89. def decode(self, preds, raw=False):
  90. """ convert text-index into text-label. """
  91. preds_idx = preds.argmax(axis=2)
  92. preds_prob = preds.max(axis=2)
  93. result_list = []
  94. for word, prob in zip(preds_idx, preds_prob):
  95. if raw:
  96. result_list.append((''.join([self.character[int(i)] for i in word]), prob))
  97. else:
  98. result = []
  99. conf = []
  100. for i, index in enumerate(word):
  101. if word[i] != 0 and (not (i > 0 and word[i - 1] == word[i])):
  102. result.append(self.character[int(index)])
  103. #conf.append(prob[i])
  104. #result_list.append((''.join(result), conf))
  105. result_list.append((''.join(result)))
  106. return result_list
  107. class DBPostProcess():
  108. def __init__(self, thresh=0.3, box_thresh=0.7, max_candidates=1000, unclip_ratio=2):
  109. self.min_size = 3
  110. self.thresh = thresh
  111. self.box_thresh = box_thresh
  112. self.max_candidates = max_candidates
  113. self.unclip_ratio = unclip_ratio
  114. def __call__(self, pred, h_w_list, is_output_polygon=False):
  115. pred = pred[:, 0, :, :]
  116. segmentation = self.binarize(pred)
  117. boxes_batch = []
  118. scores_batch = []
  119. for batch_index in range(pred.shape[0]):
  120. height, width = h_w_list[batch_index]
  121. boxes, scores = self.post_p(pred[batch_index], segmentation[batch_index], width, height,
  122. is_output_polygon=is_output_polygon)
  123. boxes_batch.append(boxes)
  124. scores_batch.append(scores)
  125. return boxes_batch, scores_batch
  126. def binarize(self, pred):
  127. return pred > self.thresh
  128. def post_p(self, pred, bitmap, dest_width, dest_height, is_output_polygon=False):
  129. '''
  130. _bitmap: single map with shape (H, W),
  131. whose values are binarized as {0, 1}
  132. '''
  133. height, width = pred.shape
  134. boxes = []
  135. new_scores = []
  136. # bitmap = bitmap.cpu().numpy()
  137. if cv2.__version__.startswith('3'):
  138. _, contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
  139. if cv2.__version__.startswith('4'):
  140. contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
  141. for contour in contours[:self.max_candidates]:
  142. epsilon = 0.005 * cv2.arcLength(contour, True)
  143. approx = cv2.approxPolyDP(contour, epsilon, True)
  144. points = approx.reshape((-1, 2))
  145. if points.shape[0] < 4:
  146. continue
  147. score = self.box_score_fast(pred, contour.squeeze(1))
  148. if self.box_thresh > score:
  149. continue
  150. if points.shape[0] > 2:
  151. box = self.unclip(points, unclip_ratio=self.unclip_ratio)
  152. if len(box) > 1:
  153. continue
  154. else:
  155. continue
  156. four_point_box, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
  157. if sside < self.min_size + 2:
  158. continue
  159. if not isinstance(dest_width, int):
  160. dest_width = dest_width.item()
  161. dest_height = dest_height.item()
  162. if not is_output_polygon:
  163. box = np.array(four_point_box)
  164. else:
  165. box = box.reshape(-1, 2)
  166. box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0, dest_width)
  167. box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0, dest_height)
  168. boxes.append(box)
  169. new_scores.append(score)
  170. return boxes, new_scores
  171. def unclip(self, box, unclip_ratio=1.5):
  172. poly = Polygon(box)
  173. distance = poly.area * unclip_ratio / poly.length
  174. offset = pyclipper.PyclipperOffset()
  175. offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
  176. expanded = np.array(offset.Execute(distance))
  177. return expanded
  178. def get_mini_boxes(self, contour):
  179. bounding_box = cv2.minAreaRect(contour)
  180. points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
  181. index_1, index_2, index_3, index_4 = 0, 1, 2, 3
  182. if points[1][1] > points[0][1]:
  183. index_1 = 0
  184. index_4 = 1
  185. else:
  186. index_1 = 1
  187. index_4 = 0
  188. if points[3][1] > points[2][1]:
  189. index_2 = 2
  190. index_3 = 3
  191. else:
  192. index_2 = 3
  193. index_3 = 2
  194. box = [points[index_1], points[index_2], points[index_3], points[index_4]]
  195. return box, min(bounding_box[1])
  196. def box_score_fast(self, bitmap, _box):
  197. # bitmap = bitmap.detach().cpu().numpy()
  198. h, w = bitmap.shape[:2]
  199. box = _box.copy()
  200. xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
  201. xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
  202. ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
  203. ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
  204. mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
  205. box[:, 0] = box[:, 0] - xmin
  206. box[:, 1] = box[:, 1] - ymin
  207. cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
  208. return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
  209. class Process_Class(QWidget):
  210. detect_end = pyqtSignal(str)
  211. clear_text = pyqtSignal()
  212. def __init__(self):
  213. super().__init__()
  214. self.image = None
  215. self.img=None
  216. self.camera_status=False
  217. self.result_string=None
  218. self.cap = cv2.VideoCapture()
  219. #detect
  220. rknn_model_detect = DETECT_MODEL
  221. self.rknn_lite_detect = RKNNLite()
  222. self.rknn_lite_detect.load_rknn(rknn_model_detect)# load RKNN model
  223. self.rknn_lite_detect.init_runtime(core_mask=RKNNLite.NPU_CORE_2)# init runtime environment
  224. #rego
  225. rknn_model_rego = REGO_MODEL
  226. self.rknn_lite_rego = RKNNLite()
  227. self.rknn_lite_rego.load_rknn(rknn_model_rego)# load RKNN model
  228. self.rknn_lite_rego.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1)# init runtime environment
  229. self.detect_end.connect(self.update_text_box)
  230. self.clear_text.connect(self.clear_text_box)
  231. def cv2_to_qpixmap(self, cv_image):
  232. height, width, channel = cv_image.shape
  233. bytes_per_line = 3 * width
  234. q_image = QImage(cv_image.data, width, height, bytes_per_line, QImage.Format_RGB888).rgbSwapped()
  235. return QPixmap.fromImage(q_image)
  236. def show_pic(self, cv_image):
  237. pixmap = self.cv2_to_qpixmap(cv_image)
  238. if MainWindow.pic_label is not None:
  239. MainWindow.pic_label.setPixmap(pixmap)
  240. QApplication.processEvents()
  241. else:
  242. print("wrong!!!!!!!")
  243. def camera_open(self):
  244. self.camera_status = not self.camera_status
  245. print("------------camera status is",self.camera_status)
  246. if self.camera_status:
  247. self.cap.open(12)
  248. if self.cap.isOpened():
  249. print("run camera")
  250. while(True):
  251. frame = self.cap.read()
  252. if not frame[0]:
  253. print("read frame failed!!!!")
  254. exit()
  255. self.image=frame[1]
  256. self.detect_pic()
  257. if not self.camera_status:
  258. break
  259. else:
  260. print("Cannot open camera")
  261. exit()
  262. else:
  263. self.release_camera()
  264. def release_camera(self):
  265. if self.cap.isOpened():
  266. self.cap.release()
  267. self.camera_status = False
  268. print("摄像头关闭")
  269. def open_file(self):
  270. # 获取图像的路径
  271. img_path, _ = QFileDialog.getOpenFileName()
  272. if img_path != '':
  273. self.image = cv2.imread(img_path)
  274. self.show_pic(self.image)
  275. def crop_and_save_image(self,image, box_points):
  276. global LABEL_SIZE_PRIVIOUS
  277. global LABEL_SIZE_LATTER
  278. i=-1
  279. # 将box_points转换为NumPy数组,并取整数值
  280. box_points = np.array(box_points, dtype=np.int32)
  281. mask = np.zeros_like(image) # 创建与图像相同大小的全黑图像
  282. print("LABEL_SIZE_PRIVIOUS ",LABEL_SIZE_PRIVIOUS,"LABEL_SIZE_LATTER ",LABEL_SIZE_LATTER)
  283. if LABEL_SIZE_PRIVIOUS==LABEL_SIZE_LATTER:
  284. LABEL_SIZE_PRIVIOUS=len(box_points)
  285. for box_point in box_points:
  286. i=i+1
  287. cropped_image = image.copy()
  288. # 使用OpenCV的函数裁剪图像
  289. x, y, w, h = cv2.boundingRect(box_point)
  290. cropped_image = image[y:y+h, x:x+w]
  291. # 创建与图像大小相同的全黑掩码
  292. mask = np.zeros_like(cropped_image)
  293. # 在掩码上绘制多边形
  294. cv2.fillPoly(mask, [box_point - (x, y)], (255, 255, 255))
  295. # 使用 bitwise_and 进行图像裁剪
  296. masked_cropped_image = cv2.bitwise_and(cropped_image, mask)
  297. # 保存裁剪后的图像
  298. output_path = f"{'./crop_pic/'}img_{i}.jpg"
  299. cv2.imwrite(output_path, masked_cropped_image)
  300. else:
  301. #self.clear_text.emit()
  302. LABEL_SIZE_LATTER=LABEL_SIZE_PRIVIOUS
  303. current_directory = os.getcwd()+'/crop_pic' # Get the current directory
  304. for filename in os.listdir(current_directory):
  305. if filename.endswith(".jpg"):
  306. file_path = os.path.join(current_directory, filename)
  307. os.remove(file_path)
  308. print(f"Deleted: {file_path}")
  309. def detect_thread(self):
  310. #detect inference
  311. img0 , image= narrow_224_32(self.image,expected_size=(640,640))
  312. outputs =self.rknn_lite_detect.inference(inputs=[image])
  313. post_proess = DBPostProcess()
  314. is_output_polygon = False
  315. box_list, score_list = post_proess(outputs[0], [image.shape[:2]], is_output_polygon=is_output_polygon)
  316. box_list, score_list = box_list[0], score_list[0]
  317. if len(box_list) > 0:
  318. idx = [x.sum() > 0 for x in box_list]
  319. box_list = [box_list[i] for i, v in enumerate(idx) if v]
  320. score_list = [score_list[i] for i, v in enumerate(idx) if v]
  321. else:
  322. box_list, score_list = [], []
  323. self.image = draw_bbox(image, box_list)
  324. self.crop_and_save_image(image,box_list)
  325. self.image = self.image[0:img0.shape[0],0:img0.shape[1]]
  326. self.show_pic(self.image)
  327. def rego_thread(self):
  328. label_convert=CTCLabelConverter(LABEL_FILE)
  329. self.clear_text.emit()
  330. for image_file in image_files:
  331. if os.path.exists(image_file):
  332. print('-----------image file',image_file,len(image_files))
  333. self.img = cv2.imread(image_file)
  334. image = resize_img_self(self.img,reszie_size=(448,32))
  335. # Inference
  336. outputs = self.rknn_lite_rego.inference(inputs=[image])
  337. #post process
  338. feat_2 = torch.tensor(outputs[0],dtype=torch.float32)
  339. txt = label_convert.decode(feat_2.detach().numpy())
  340. self.result_string = ' '.join(txt)
  341. print(self.result_string)
  342. self.detect_end.emit(self.result_string)
  343. else:
  344. print("-----------no crop image!!!")
  345. def detect_pic(self):
  346. self.detect_thread()
  347. my_thread = threading.Thread(target=self.rego_thread)
  348. # 启动线程
  349. my_thread.start()
  350. # 等待线程结束
  351. my_thread.join()
  352. def update_text_box(self, text):
  353. # 在主线程中更新文本框的内容
  354. MainWindow.text_box.append(text)
  355. def clear_text_box(self):
  356. print("clear--------------------------------")
  357. # 在主线程中更新文本框的内容
  358. MainWindow.text_box.clear()
  359. class MainWindow(QMainWindow):
  360. #pic_label = None
  361. def __init__(self):
  362. pic_label = None
  363. text_box = None
  364. super().__init__()
  365. self.process_functions = Process_Class()
  366. self.window = QWidget()
  367. # 创建小部件
  368. self.pic_label = QLabel('Show Window!', parent=self.window)
  369. self.pic_label.setMinimumHeight(500) # 设置最小高度
  370. self.pic_label.setMaximumHeight(500) # 设置最大高度
  371. self.pic_button = QPushButton('Picture', parent=self.window)
  372. self.pic_button.clicked.connect(self.process_functions.open_file)
  373. self.camera_button = QPushButton('Camera', parent=self.window)
  374. self.camera_button.clicked.connect(self.process_functions.camera_open)
  375. self.detect_button = QPushButton('Detect', parent=self.window)
  376. self.detect_button.clicked.connect(self.process_functions.detect_pic)
  377. self.text_box = QTextEdit()
  378. # 创建垂直布局管理器并将小部件添加到布局中
  379. self.left_layout = QVBoxLayout()
  380. self.right_layout = QVBoxLayout()
  381. self.layout = QHBoxLayout()
  382. self.create_ui()
  383. self.window.closeEvent = self.closeEvent
  384. def create_ui(self):
  385. self.window.setWindowTitle('Scene_text_rego')
  386. self.window.setGeometry(0, 0, 800, 600) # 设置窗口位置和大小
  387. # 设置主窗口的布局
  388. self.pic_label.setStyleSheet('border: 2px solid black; padding: 10px;')
  389. self.left_layout.addWidget(self.pic_label)
  390. self.left_layout.addWidget(self.text_box)
  391. self.right_layout.addWidget(self.pic_button)
  392. self.right_layout.addWidget(self.camera_button)
  393. self.right_layout.addWidget(self.detect_button)
  394. self.layout.addLayout(self.left_layout)
  395. self.layout.addLayout(self.right_layout)
  396. self.window.setLayout(self.layout)
  397. self.window.show()
  398. def closeEvent(self, event):
  399. # 释放摄像头资源
  400. self.process_functions.release_camera()
  401. event.accept()
  402. def main():
  403. # 创建应用程序对象
  404. app = QApplication(sys.argv)
  405. win = MainWindow()
  406. MainWindow.pic_label = win.pic_label # 设置类变量pic_label为MainWindow对象的pic_label
  407. MainWindow.text_box = win.text_box # 设置类变量pic_label为MainWindow对象的pic_label
  408. # 运行应用程序
  409. sys.exit(app.exec_())
  410. rknn_lite_detect.release()
  411. if __name__ == '__main__':
  412. main()

运行结果

 参考资料

博文:

【工程部署】手把手教你在RKNN上部署OCR服务(上)_rknn ocr_三叔家的猫的博客-CSDN博客

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/933303
推荐阅读
相关标签
  

闽ICP备14008679号