赞
踩
Apache Flink是一个开源的流处理框架,旨在处理大规模数据流。Flink能够处理实时流数据和批处理数据,具有高吞吐量、低延迟、容错等特性。以下是对Flink的详细介绍:
在pom.xml中添加Flink相关依赖:
<dependencies> <!-- Spring Boot dependencies --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> </dependency> <!-- Apache Flink dependencies --> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.12</artifactId> <version>1.14.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.12</artifactId> <version>1.14.0</version> </dependency> </dependencies>
下面是一个简单的Flink流处理应用,读取数据源,进行简单的转换和输出:
import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.util.Collector; public class WordCount { public static void main(String[] args) throws Exception { // 设置执行环境 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 从socket读取数据 DataStream<String> text = env.socketTextStream("localhost", 9999); // 解析数据,按单词计数 DataStream<Tuple2<String, Integer>> counts = text .flatMap(new Tokenizer()) .keyBy(value -> value.f0) .sum(1); // 打印结果 counts.print(); // 执行任务 env.execute("Streaming WordCount"); } // 用于解析数据的函数 public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> { @Override public void flatMap(String value, Collector<Tuple2<String, Integer>> out) { for (String word : value.split("\\s")) { if (word.length() > 0) { out.collect(new Tuple2<>(word, 1)); } } } } }
Apache Flink是一种功能强大的流处理框架,适用于各种实时数据处理场景。其高性能、容错能力和灵活的时间处理特性,使其成为大数据处理的重要工具。通过对流和批处理的一体化支持,Flink为开发者提供了统一的数据处理平台。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。