当前位置:   article > 正文

JCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

JCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

JJCR一区 | Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断

分类效果

格拉姆矩阵图

在这里插入图片描述

GAF-PCNN

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

GASF-CNN

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

GADF-CNN

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断,三个模型对比,运行环境matlab2023b;

2.先运行格拉姆矩阵变换进行数据转换,然后运行分别GAF_PCNN.mGADF_CNN.m,GASF_CNN.m完成多特征输入数据分类预测/故障诊断;

GADF_CNN.m,是只用到了格拉姆矩阵的GADF矩阵,将GADF矩阵送入CNN进行故障诊断。

GASF_CNN.m,是只用到了格拉姆矩阵的GASF矩阵,将GASF矩阵送入CNN进行故障诊断。

GAF_PCNN.m,是将GASF 图与GADF 图同时送入两条并行CNN 中,经过卷积-池化后,两条CNN网络各输出一组一维向量;然后,将所输出两组一维向量进行拼接融合;通过全连接层后,最终将融合特征送入到Softmax 分类器中。

参考文献

在这里插入图片描述
在这里插入图片描述

  • PCNN结构
    在这里插入图片描述
  • CNN结构
    在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN、GASF-CNN、GADF-CNN的多特征输入数据分类预测/故障诊断



    fullyConnectedLayer(classnum,'Name','fc12')
    softmaxLayer('Name','softmax')
    classificationLayer('Name','classOutput')];

lgraph = layerGraph(layers1);

layers2 = [imageInputLayer([size(input2,1) size(input2,2)],'Name','vinput')  
    
    flattenLayer(Name='flatten2')
    
    bilstmLayer(15,'Outputmode','last','name','bilstm') 
    dropoutLayer(0.1)        % Dropout层,以概率为0.2丢弃输入
    reluLayer('Name','relu_2')
    selfAttentionLayer(2,2,"Name","mutilhead-attention")   %Attention机制
    fullyConnectedLayer(10,'Name','fc21')];
lgraph = addLayers(lgraph,layers2);
lgraph = connectLayers(lgraph,'fc21','add/in2');

plot(lgraph)


%% Set the hyper parameters for unet training
options = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 1000, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.001, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',700, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线
%Code introduction
if nargin<2
    error('You have to supply all required input paremeters, which are ActualLabel, PredictedLabel')
end
if nargin < 3
    isPlot = true;
end

%plotting the widest polygon
A1=1;
A2=1;
A3=1;
A4=1;
A5=1;
A6=1;

a=[-A1 -A2/2 A3/2 A4 A5/2 -A6/2 -A1];
b=[0 -(A2*sqrt(3))/2 -(A3*sqrt(3))/2 0 (A5*sqrt(3))/2 (A6*sqrt(3))/2 0];

if isPlot
    figure   
    plot(a, b, '--bo','LineWidth',1.3)
    axis([-1.5 1.5 -1.5 1.5]);
    set(gca,'FontName','Times New Roman','FontSize',12);
    hold on
    %grid
end


% Calculating the True positive (TP), False Negative (FN), False Positive...
% (FP),True Negative (TN), Classification Accuracy (CA), Sensitivity (SE), Specificity (SP),...
% Kappa (K) and F  measure (F_M) metrics
PositiveClass=max(ActualLabel);
NegativeClass=min(ActualLabel);
cp=classperf(ActualLabel,PredictedLabel,'Positive',PositiveClass,'Negative',NegativeClass);
 CM=cp.DiagnosticTable;
    TP=CM(1,1);
    FN=CM(2,1);
    FP=CM(1,2);
    TN=CM(2,2);
    CA=cp.CorrectRate;
    SE=cp.Sensitivity; %TP/(TP+FN)
    SP=cp.Specificity; %TN/(TN+FP)
    Pr=TP/(TP+FP);
    Re=TP/(TP+FN);
    F_M=2*Pr*Re/(Pr+Re);
    FPR=FP/(TN+FP);
    TPR=TP/(TP+FN);
    K=TP/(TP+FP+FN);
    [X1,Y1,T1,AUC] = perfcurve(ActualLabel,PredictedLabel,PositiveClass); 
    %ActualLabel(1) means that the first class is assigned as positive class
    %plotting the calculated CA, SE, SP, AUC, K and F_M on polygon
x=[-CA -SE/2 SP/2 AUC K/2 -F_M/2 -CA];
y=[0 -(SE*sqrt(3))/2 -(SP*sqrt(3))/2 0 (K*sqrt(3))/2 (F_M*sqrt(3))/2 0];

if isPlot
    plot(x, y, '-ko','LineWidth',1)
    set(gca,'FontName','Times New Roman','FontSize',12);
%     shadowFill(x,y,pi/4,80)
    fill(x, y,[0.8706 0.9216 0.9804])
end

%calculating the PAM value
% Get the number of vertices
n = length(x);
% Initialize the area
p_area = 0;
% Apply the formula
for i = 1 : n-1
    p_area = p_area + (x(i) + x(i+1)) * (y(i) - y(i+1));
end
p_area = abs(p_area)/2;

%Normalization of the polygon area to one.
PA=p_area/2.59807;

if isPlot
    %Plotting the Polygon
    plot(0,0,'r+')
    plot([0 -A1],[0 0] ,'--ko')
    text(-A1-0.3, 0,'CA','FontWeight','bold','FontName','Times New Roman')
    plot([0 -A2/2],[0 -(A2*sqrt(3))/2] ,'--ko')
    text(-0.59,-1.05,'SE','FontWeight','bold','FontName','Times New Roman')
    plot([0 A3/2],[0 -(A3*sqrt(3))/2] ,'--ko')
    text(0.5, -1.05,'SP','FontWeight','bold','FontName','Times New Roman')
    plot([0 A4],[0 0] ,'--ko')
    text(A4+0.08, 0,'AUC','FontWeight','bold','FontName','Times New Roman')
    plot([0 A5/2],[0 (A5*sqrt(3))/2] ,'--ko')
    text(0.5, 1.05,'J','FontWeight','bold','FontName','Times New Roman')

    daspect([1 1 1])
end
Metrics.PA=PA;
Metrics.CA=CA;
Metrics.SE=SE;
Metrics.SP=SP;
Metrics.AUC=AUC;
Metrics.K=K;
Metrics.F_M=F_M;


printVar(:,1)=categories;
printVar(:,2)={PA, CA, SE, SP, AUC, K, F_M};
disp('预测结果打印:')
for i=1:length(categories)
    fprintf('%23s: %.2f \n', printVar{i,1}, printVar{i,2})
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号