当前位置:   article > 正文

【chatgpt】 PyTorch中reshape和view

【chatgpt】 PyTorch中reshape和view

PyTorch 中,reshapeview 都用于改变张量的形状,但它们在实现和使用上有一些重要的区别。理解这些区别对于在复杂的张量操作中选择合适的方法非常关键。

view 方法

  • 连续性要求view 方法要求原始张量在内存中是连续的。如果张量不是连续的(即,内存布局不是顺序的),需要先调用 contiguous 方法。
  • 效率:如果张量是连续的,view 非常高效,因为它不复制数据,只是改变了张量的视图。
示例
import torch

# 创建一个张量
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(f"原始张量:\n{tensor}")

# 将张量重塑为 3x2
reshaped_tensor = tensor.view(3, 2)
print(f"view 重塑后的张量 (3x2):\n{reshaped_tensor}")

# 如果张量不连续,需要先调用 contiguous
non_contiguous_tensor = tensor.t()  # 转置使其非连续
print(f"非连续张量:\n{non_contiguous_tensor}")
contiguous_tensor = non_contiguous_tensor.contiguous().view(3, 2)
print(f"contiguous 后使用 view 重塑的张量 (3x2):\n{contiguous_tensor}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

输出

原始张量:
tensor([[1, 2, 3],
        [4, 5, 6]])
view 重塑后的张量 (3x2):
tensor([[1, 2],
        [3, 4],
        [5, 6]])
非连续张量:
tensor([[1, 4],
        [2, 5],
        [3, 6]])
contiguous 后使用 view 重塑的张量 (3x2):
tensor([[1, 4],
        [2, 5],
        [3, 6]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

reshape 方法

  • 灵活性reshape 方法更灵活,可以处理非连续的张量。它会尝试返回一个与原始张量共享数据的新张量,但如果无法做到,它将创建一个新的张量,并复制数据。
  • 效率:在处理非连续张量时,reshape 可能会比 view 慢,因为它可能需要复制数据。
示例
import torch

# 创建一个张量
tensor = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(f"原始张量:\n{tensor}")

# 将张量重塑为 3x2
reshaped_tensor = tensor.reshape(3, 2)
print(f"reshape 重塑后的张量 (3x2):\n{reshaped_tensor}")

# 非连续张量直接使用 reshape
non_contiguous_tensor = tensor.t()  # 转置使其非连续
print(f"非连续张量:\n{non_contiguous_tensor}")
reshaped_non_contiguous_tensor = non_contiguous_tensor.reshape(3, 2)
print(f"reshape 直接重塑的张量 (3x2):\n{reshaped_non_contiguous_tensor}")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

输出

原始张量:
tensor([[1, 2, 3],
        [4, 5, 6]])
reshape 重塑后的张量 (3x2):
tensor([[1, 2],
        [3, 4],
        [5, 6]])
非连续张量:
tensor([[1, 4],
        [2, 5],
        [3, 6]])
reshape 直接重塑的张量 (3x2):
tensor([[1, 4],
        [2, 5],
        [3, 6]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

总结

  • view

    • 要求原始张量是连续的。如果不是连续的,需要先调用 contiguous 方法。
    • 在连续张量上非常高效,因为它不会复制数据,只是改变了视图。
  • reshape

    • 更加灵活,可以处理非连续的张量。
    • 尝试返回一个共享数据的新张量,但如果不能实现,会创建一个新的张量并复制数据。

在实际使用中,如果你确定你的张量是连续的,并且你不希望创建数据的副本,使用 view更高效。而如果你的张量可能是非连续的,或者你希望更加灵活地重塑张量,reshape 会是更好的选择。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/803310
推荐阅读
相关标签
  

闽ICP备14008679号