赞
踩
datasets
├─images
│ ├─test
│ ├─train
│ └─val
├─annotations
├─test
├─train
└─val
--root_dir
:待转换的图像的路径,例如我传入的是训练集的路径...\images\train
--save_dir
:保存转换后的json文件的路径,通常都是存放在数据集的annotations
子文件下的--classtxt_path
:存放类别的文件路径--save_name
:转换后的json文件名import os import cv2 import json from tqdm import tqdm import argparse parser = argparse.ArgumentParser() parser.add_argument('--root_dir', default=r'F:\A_Publicdatasets\RDD2020-1202\train_valid\RDD2020_together\images\test', type=str, help="root path of images and labels, include ./images and ./labels and classes.txt") parser.add_argument('--save_dir', type=str, default=r'F:\A_Publicdatasets\RDD2020-1202\train_valid\RDD2020_together\annotations', help="if not split the dataset, give a path to a json file") parser.add_argument('--classtxt_path', type=str, default=r'G:\pycharmprojects\autodl-yolov7\yolov7-main-biyebase\TXTOCOCO\classes.txt', help="class filepath") parser.add_argument('--save_name', type=str, default='instances_test.json', help="建议只修改后面的train为val、test等,否则自行改代码") arg = parser.parse_args() def yolo2coco(arg): with open(arg.classtxt_path, 'r') as f: # 获取类别名 classes = list(map(lambda x: x.strip(), f.readlines())) indexes = [] imagesdir = arg.root_dir for file in os.listdir(imagesdir): indexes.append(f'{imagesdir}/{file}') # 绝对路径 ''' 下面这段代码是对我自己有用的,看官可将其删除 正常的文件排布应该为: -- images --- train --- val --- test 而我的是: -- images --- Czech ---- train ---- val ---- test --- India ... --- Japan ... ''' # --------------- lwd ---------------- # # cities = ['Czech', 'India', 'Japan'] # setdir = arg.save_path.split('_')[-1].split('.')[0] # 'train' 'val' 'test' # indexes = [] # for city in cities: # city_imagedir = f'F:/A_Publicdatasets/RDD2020-1202/train_valid/{city}/images/{setdir}' # for file in os.listdir(city_imagedir): # indexes.append(f'{city_imagedir}/{file}') # --------------- lwd ---------------- # dataset = {'categories': [], 'annotations': [], 'images': []} for i, cls in enumerate(classes, 0): dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'}) # 标注的id ann_id_cnt = 0 for k, index in enumerate(tqdm(indexes)): # 支持 png jpg 格式的图片。 txtPath = index.replace('images', 'labels').replace('.jpg', '.txt') # 读取图像的宽和高 im = cv2.imread(index) imageFile = index.split('/')[-1] # img.jpg height, width, _ = im.shape # 添加图像的信息 if not os.path.exists(txtPath): # 如没标签,跳过,只保留图片信息。 continue dataset['images'].append({'file_name': imageFile, 'id': k, 'width': width, 'height': height}) with open(txtPath, 'r') as fr: labelList = fr.readlines() for label in labelList: label = label.strip().split() x = float(label[1]) y = float(label[2]) w = float(label[3]) h = float(label[4]) # convert x,y,w,h to x1,y1,x2,y2 H, W, _ = im.shape x1 = (x - w / 2) * W y1 = (y - h / 2) * H x2 = (x + w / 2) * W y2 = (y + h / 2) * H # 标签序号从0开始计算, coco2017数据集标号混乱,不管它了。 cls_id = int(label[0]) width = max(0, x2 - x1) height = max(0, y2 - y1) dataset['annotations'].append({ 'area': width * height, 'bbox': [x1, y1, width, height], 'category_id': cls_id, 'id': ann_id_cnt, 'image_id': k, 'iscrowd': 0, # mask, 矩形是从左上角点按顺时针的四个顶点 'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]] }) ann_id_cnt += 1 # 保存结果 save_path = os.path.join(arg.save_dir, arg.save_name) with open(save_path, 'w') as f: # json.dump(dataset, f) json_str = json.dumps(dataset) f.write(json_str) print('Save annotation to {}'.format(save_path)) if __name__ == "__main__": yolo2coco(arg)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。