赞
踩
用litellm通了,有空再写教程
- pip install 'litellm[proxy]'
- litellm --model ollama/qwen:0.5b
- http://127.0.0.1:4000/
- OpenAI Python library
-
- #ollama本身也可以的
-
- from openai import OpenAI
-
- client = OpenAI(
- base_url = 'http://localhost:11434/v1',
- api_key='ollama', # required, but unused
- )
-
- response = client.chat.completions.create(
- model="llama2",
- messages=[
- {"role": "system", "content": "You are a helpful assistant."},
- {"role": "user", "content": "Who won the world series in 2020?"},
- {"role": "assistant", "content": "The LA Dodgers won in 2020."},
- {"role": "user", "content": "Where was it played?"}
- ]
- )
- print(response.choices[0].message.content)
- from pandasai import SmartDataframe
- from pandasai.llm.local_llm import LocalLLM
-
- ollama_llm = LocalLLM(api_base="http://localhost:11434/v1", model="codellama")
- df = SmartDataframe("data.csv", config={"llm": ollama_llm})
-
-
-
- ################################
-
- from ollama import OpenAI
-
- client = OpenAI(
- base_url='http://localhost:11434/v1/',
- api_key='ollama', # 此处的api_key为必填项,但在ollama中会被忽略
- )
- chat_completion = client.chat.completions.create(
- messages=[
- {
- 'role': 'user',
- 'content': 'Say this is a test',
- }
- ],
- model='llama2',
- )
-
- ##########################
-
- import requests
-
- # API 的 URL
- url = 'http://localhost:11434/api/chat'
-
- # 要发送的数据
- data = {
- "model": "llama3:latest",
- "messages": [
- {
- "role": "user",
- "content": "Hello, how are you?"
- }
- ],
- "stream": False
- }
-
- # 发送 POST 请求
- response = requests.post(url, json=data)
-
- # 打印响应内容
- print(response.text)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。