当前位置:   article > 正文

机器学习 --- k-means

机器学习 --- k-means

k-means是属于机器学习里面的非监督学习,通常是大家接触到的第一个聚类算法,其原理非常简单,是一种典型的基于距离的聚类算法。
聚类算法中,将相似的数据划分为一个集合,一个集合称为一个簇。 k-means(k均值)聚类,之所以称为 k均值,是因为它可以发现k个簇,且每个簇的中心采用簇中所含值的均值计算而成。
本实训项目将基于Python语言搭建出一个k-means模型,并基于sklean实现对红酒数据进行聚类。

第1关:距离度量

任务描述
本关任务:使用Python编写一个能计算样本间欧式距离与曼哈顿距离的方法。

相关知识
为了完成本关任务,你需要掌握:1.欧氏距离,2.曼哈顿距离。

欧氏距离
欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。

在这里插入图片描述

在这里插入图片描述

曼哈顿距离
顾名思义,在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”。

在这里插入图片描述

编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完成使用Python编写一个能计算样本间欧式距离与曼哈顿距离的方法。

测试说明
平台会对你的代码进行运行测试,如果实际输出结果与预期结果相同,则通关;反之,则 GameOver。

#encoding=utf8    
import numpy as np
def distance(x,y,p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    ''' 
    #********* Begin *********#
    dis2 = np.sum(np.abs(x-y)**p)
    dis = np.power(dis2,1/p)
    return dis
    #********* End *********#

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

第2关:什么是质心

任务描述
本关任务:使用Python编写一个能计算质心的方法。

相关知识
为了完成本关任务,你需要掌握:1.欧氏距离。

欧氏距离
欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。
在这里插入图片描述
在这里插入图片描述

编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完成质心的计算。

测试说明
平台会对你的代码进行运行测试,如果实际输出结果与预期结果相同,则通关;反之,则 GameOver。

#encoding=utf8
import numpy as np
#计算样本间距离
def distance(x, y, p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    '''
    #********* Begin *********#    
    dis2 = np.sum(np.abs(x-y)**p)
    dis = np.power(dis2,1/p)
    return dis
    #********* End *********#
#计算质心
def cal_Cmass(data):
    '''
    input:data(ndarray):数据样本
    output:mass(ndarray):数据样本质心
    '''
    #********* Begin *********#
    Cmass = np.mean(data,axis=0)
    #********* End *********#
    return Cmass
#计算每个样本到质心的距离,并按照从小到大的顺序排列
def sorted_list(data,Cmass):
    '''
    input:data(ndarray):数据样本
          Cmass(ndarray):数据样本质心
    output:dis_list(list):排好序的样本到质心距离
    '''
    #********* Begin *********#
    dis_list = []
    for i in range(len(data)):
        dis_list.append(distance(Cmass,data[i][:]))
    dis_list = sorted(dis_list)
    #********* End *********#
    return dis_list

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

第3关:k-means算法流程

任务描述
本关任务:使用Python实现k-means算法,并根据红酒的13个特征对红酒数据进行聚类。

相关知识
为了完成本关任务,你需要掌握:1.k-means算法原理,2.k-means算法流程,3.如何确定k的值。

数据集介绍
数据集为一份红酒数据,一共有178个样本,每个样本有13个特征,这里不会提供你红酒的标签,你需要自己根据这13个特征对红酒进行聚类,部分数据如下图:

在这里插入图片描述

编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完使用Python实现k-means算法的任务。

测试说明
平台会对你的代码进行运行测试,如果实际输出结果与预期结果相同,则通关;反之,则 GameOver。

# encoding=utf8
import numpy as np


# 计算一个样本与数据集中所有样本的欧氏距离的平方
def euclidean_distance(one_sample, X):
    one_sample = one_sample.reshape(1, -1)
    distances = np.power(np.tile(one_sample, (X.shape[0], 1)) - X, 2).sum(axis=1)
    return distances


def cal_dis(old_centroids, centroids):
    dis = 0
    for i in range(old_centroids.shape[0]):
        dis += np.linalg.norm(old_centroids[i] - centroids[i], 2)
    return dis


class Kmeans():
    """Kmeans聚类算法.
    Parameters:
    -----------
    k: int
        聚类的数目.
    max_iterations: int
        最大迭代次数.
    varepsilon: float
        判断是否收敛, 如果上一次的所有k个聚类中心与本次的所有k个聚类中心的差都小于varepsilon,
        则说明算法已经收敛
    """

    def __init__(self, k=2, max_iterations=500, varepsilon=0.0001):
        self.k = k
        self.max_iterations = max_iterations
        self.varepsilon = varepsilon
        np.random.seed(1)

    # ********* Begin *********#
    # 从所有样本中随机选取self.k样本作为初始的聚类中心
    def init_random_centroids(self, X):
        m, n = X.shape
        center = np.zeros((self.k, n))
        for i in range(self.k):
            index = int(np.random.uniform(0, m))
            center[i] = X[index]
        return center

    # 返回距离该样本最近的一个中心索引[0, self.k)
    def _closest_centroid(self, sample, centroids):
        distances = euclidean_distance(sample, centroids)
        return np.argsort(distances)[0]

    # 将所有样本进行归类,归类规则就是将该样本归类到与其最近的中心
    def create_clusters(self, centroids, X):
        m, n = X.shape
        clusters = np.mat(np.zeros((m, 1)))
        for i in range(m):
            index = self._closest_centroid(X[i], centroids)
            clusters[i] = index
        return clusters

    # 对中心进行更新
    def update_centroids(self, clusters, X):
        centroids = np.zeros([self.k, X.shape[1]])
        for i in range(self.k):
            pointsInCluster = []
            for j in range(clusters.shape[0]):
                if clusters[j] == i:
                    pointsInCluster.append(X[j])
            centroids[i] = np.mean(pointsInCluster, axis=0)  # 对矩阵的行求均值
        return centroids

    # 将所有样本进行归类,其所在的类别的索引就是其类别标签
    def get_cluster_labels(self, clusters, X):
        return

    # 对整个数据集X进行Kmeans聚类,返回其聚类的标签
    def predict(self, X):
        # 从所有样本中随机选取self.k样本作为初始的聚类中心
        centroids = self.init_random_centroids(X)
        clusters = []
        iter = 0
        # 迭代,直到算法收敛(上一次的聚类中心和这一次的聚类中心几乎重合)或者达到最大迭代次数
        while iter < self.max_iterations:
            iter += 1

            # 将所有进行归类,归类规则就是将该样本归类到与其最近的中心
            clusters = self.create_clusters(centroids, X)

            # 计算新的聚类中心
            old_centroids = centroids[:]
            centroids = self.update_centroids(clusters, X)
            if cal_dis(old_centroids, centroids) < self.varepsilon:
                break

            # 如果聚类中心几乎没有变化,说明算法已经收敛,退出迭代
        return np.array(clusters).reshape([X.shape[0], ])

    # ********* End *********#

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100

第4关:sklearn中的k-means

任务描述
本关任务::你需要调用 sklearn 中的K-means模型,对红酒数据进行聚类。

相关知识
为了完成本关任务,你需要掌握:1.KMeans。

数据集介绍
数据集为一份红酒数据,一共有178个样本,每个样本有13个特征,这里不会提供你红酒的标签,你需要自己根据这13个特征对红酒进行聚类,部分数据如下图:

在这里插入图片描述

编程要求
请仔细阅读右侧代码,结合相关知识,在 Begin-End 区域内进行代码补充,完使用 sklearn 中的K-means模型实现红酒聚类任务。

测试说明
平台会对你的代码进行运行测试,如果实际输出结果与预期结果相同,则通关;反之,则 GameOver。

#encoding=utf8
from sklearn.cluster import KMeans
def kmeans_cluster(data):
    '''
    input:data(ndarray):样本数据
    output:result(ndarray):聚类结果
    '''
    #********* Begin *********#
    km = KMeans(n_clusters=3,random_state=888)
    result = km.fit_predict(data)
    #********* End *********# 
    return result

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

欢迎大家加我微信学习讨论
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Li_阴宅/article/detail/958325
推荐阅读
  

闽ICP备14008679号