赞
踩
1.YOLOv8图像分割支持的数据格式:
(1).用于训练YOLOv8分割模型的数据集标签格式如下:
1).每幅图像对应一个文本文件:数据集中的每幅图像都有一个与图像文件同名的对应文本文件,扩展名为".txt";
2).文本文件中每个目标(object)占一行:文本文件中的每一行对应图像中的一个目标实例;
3).每行目标信息:如下所示:之间用空格分隔
A.目标类别索引:整数,例如:0代表person,1代表car,等等;
B.目标边界坐标:mask区域周围的边界坐标,归一化为[0, 1];
<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>
注:每行的长度不必相等;每个分隔label必须至少有3对xy点
(2).数据集YAML格式:Ultralytics框架使用YAML文件格式来定义用于训练分隔模型的数据集和模型配置,如下面测试数据集melon中melon_seg.yaml内容如下: 在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集
- path: ../datasets/melon_seg # dataset root dir
- train: images/train # train images (relative to 'path')
- val: images/val # val images (relative to 'path')
- test: # test images (optional)
-
- # Classes
- names:
- 0: watermelon
- 1: wintermelon
2.使用半自动标注工具 EISeg 对数据集melon进行标注:
(1).从 PaddleSeg 中下载"通用场景的图像标注"高精度模型static_hrnet18_ocr64_cocolvis.zip;
(2).标注前先按照下面操作设置好:
1).选中JSON保存,取消COCO保存;
2).选中自动保存;
3).取消灰度保存.
3.编写Python脚本将EISeg生成的json文件转换成YOLOv8 segment支持的txt文件:
- import os
- import json
- import argparse
- import colorama
- import random
- import shutil
- import cv2
-
- # supported image formats
- img_formats = (".bmp", ".jpeg", ".jpg", ".png", ".webp")
-
- def parse_args():
- parser = argparse.ArgumentParser(description="json(EISeg) to txt(YOLOv8)")
-
- parser.add_argument("--dir", required=True, type=str, help="images directory, all json files are in the label directory, and generated txt files are also in the label directory")
- parser.add_argument("--labels", required=True, type=str, help="txt file that hold indexes and labels, one label per line, for example: face 0")
- parser.add_argument("--val_size", default=0.2, type=float, help="the proportion of the validation set to the overall dataset:[0., 0.5]")
- parser.add_argument("--name", required=True, type=str, help="the name of the dataset")
-
- args = parser.parse_args()
- return args
-
- def get_labels_index(name):
- labels = {} # key,value
- with open(name, "r") as file:
- for line in file:
- # print("line:", line)
-
- key_value = []
- for v in line.split(" "):
- # print("v:", v)
- key_value.append(v.replace("\n", "")) # remove line breaks(\n) at the end of the line
- if len(key_value) != 2:
- print(colorama.Fore.RED + "Error: each line should have only two values(key value):", len(key_value))
- continue
-
- labels[key_value[0]] = key_value[1]
-
- with open(name, "r") as file:
- line_num = len(file.readlines())
-
- if line_num != len(labels):
- print(colorama.Fore.RED + "Error: there may be duplicate lables:", line_num, len(labels))
-
- return labels
-
- def get_json_files(dir):
- jsons = []
- for x in os.listdir(dir+"/label"):
- if x.endswith(".json"):
- jsons.append(x)
-
- return jsons
-
- def parse_json(name_json, name_image):
- img = cv2.imread(name_image)
- if img is None:
- print(colorama.Fore.RED + "Error: unable to load image:", name_image)
- raise
- height, width = img.shape[:2]
-
- with open(name_json, "r") as file:
- data = json.load(file)
-
- objects=[]
- for i in range(0, len(data)):
- object = []
- object.append(data[i]["name"])
- object.append(data[i]["points"])
- objects.append(object)
-
- return width, height, objects
-
- def write_to_txt(name_json, width, height, objects, labels):
- name_txt = name_json[:-len(".json")] + ".txt"
- # print("name txt:", name_txt)
-
- with open(name_txt, "w") as file:
- for obj in objects: # 0: name; 1: points
- if len(obj[1]) < 3:
- print(colorama.Fore.RED + "Error: must be at least 3 pairs:", len(obj[1]), name_json)
- raise
-
- if obj[0] not in labels:
- print(colorama.Fore.RED + "Error: unsupported label:", obj[0], labels)
- raise
-
- string = ""
- for pt in obj[1]:
- string = string + " " + str(round(pt[0] / width, 6)) + " " + str(round(pt[1] / height, 6))
-
- string = labels[obj[0]] + string + "\r"
- file.write(string)
-
- def json_to_txt(dir, jsons, labels):
- for json in jsons:
- name_json = dir + "/label/" + json
- name_image = ""
-
- for format in img_formats:
- file = dir + "/" + json[:-len(".json")] + format
- if os.path.isfile(file):
- name_image = file
- break
-
- if not name_image:
- print(colorama.Fore.RED + "Error: required image does not exist:", json[:-len(".json")])
- raise
- # print("name image:", name_image)
-
- width, height, objects = parse_json(name_json, name_image)
- # print(f"width: {width}; height: {height}; objects: {objects}")
-
- write_to_txt(name_json, width, height, objects, labels)
-
-
- def get_random_sequence(length, val_size):
- numbers = list(range(0, length))
- val_sequence = random.sample(numbers, int(length*val_size))
- # print("val_sequence:", val_sequence)
-
- train_sequence = [x for x in numbers if x not in val_sequence]
- # print("train_sequence:", train_sequence)
-
- return train_sequence, val_sequence
-
- def get_files_number(dir):
- count = 0
- for file in os.listdir(dir):
- if os.path.isfile(os.path.join(dir, file)):
- count += 1
-
- return count
-
- def split_train_val(dir, jsons, name, val_size):
- if val_size > 0.5 or val_size < 0.01:
- print(colorama.Fore.RED + "Error: the interval for val_size should be:[0.01, 0.5]:", val_size)
- raise
-
- dst_dir_images_train = "datasets/" + name + "/images/train"
- dst_dir_images_val = "datasets/" + name + "/images/val"
- dst_dir_labels_train = "datasets/" + name + "/labels/train"
- dst_dir_labels_val = "datasets/" + name + "/labels/val"
-
- try:
- os.makedirs(dst_dir_images_train) #, exist_ok=True
- os.makedirs(dst_dir_images_val)
- os.makedirs(dst_dir_labels_train)
- os.makedirs(dst_dir_labels_val)
- except OSError as e:
- print(colorama.Fore.RED + "Error: cannot create directory:", e.strerror)
- raise
-
- # print("jsons:", jsons)
- train_sequence, val_sequence = get_random_sequence(len(jsons), val_size)
-
- for index in train_sequence:
- for format in img_formats:
- file = dir + "/" + jsons[index][:-len(".json")] + format
- # print("file:", file)
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_images_train)
- break
-
- file = dir + "/label/" + jsons[index][:-len(".json")] + ".txt"
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_labels_train)
-
- for index in val_sequence:
- for format in img_formats:
- file = dir + "/" + jsons[index][:-len(".json")] + format
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_images_val)
- break
-
- file = dir + "/label/" + jsons[index][:-len(".json")] + ".txt"
- if os.path.isfile(file):
- shutil.copy(file, dst_dir_labels_val)
-
- num_images_train = get_files_number(dst_dir_images_train)
- num_images_val = get_files_number(dst_dir_images_val)
- num_labels_train = get_files_number(dst_dir_labels_train)
- num_labels_val = get_files_number(dst_dir_labels_val)
-
- if num_images_train + num_images_val != len(jsons) or num_labels_train + num_labels_val != len(jsons):
- print(colorama.Fore.RED + "Error: the number of files is inconsistent:", num_images_train, num_images_val, num_labels_train, num_labels_val, len(jsons))
- raise
-
-
- def generate_yaml_file(labels, name):
- path = os.path.join("datasets", name, name+".yaml")
- # print("path:", path)
- with open(path, "w") as file:
- file.write("path: ../datasets/%s # dataset root dir\n" % name)
- file.write("train: images/train # train images (relative to 'path')\n")
- file.write("val: images/val # val images (relative to 'path')\n")
- file.write("test: # test images (optional)\n\n")
-
- file.write("# Classes\n")
- file.write("names:\n")
- for key, value in labels.items():
- # print(f"key: {key}; value: {value}")
- file.write(" %d: %s\n" % (int(value), key))
-
-
- if __name__ == "__main__":
- colorama.init()
- args = parse_args()
-
- # 1. parse JSON file and write it to a TXT file
- labels = get_labels_index(args.labels)
- # print("labels:", labels)
- jsons = get_json_files(args.dir)
- # print(f"jsons: {jsons}; number: {len(jsons)}")
- json_to_txt(args.dir, jsons, labels)
-
- # 2. split the dataset
- split_train_val(args.dir, jsons, args.name, args.val_size)
-
- # 3. generate a YAML file
- generate_yaml_file(labels, args.name)
-
- print(colorama.Fore.GREEN + "====== execution completed ======")

以上脚本包含3个功能:
1).将json文件转换成txt文件;
2).将数据集随机拆分成训练集和测试集;
3).产生需要的yaml文件
4.编写Python脚本进行train:
- import argparse
- import colorama
- from ultralytics import YOLO
-
- def parse_args():
- parser = argparse.ArgumentParser(description="YOLOv8 train")
- parser.add_argument("--yaml", required=True, type=str, help="yaml file")
- parser.add_argument("--epochs", required=True, type=int, help="number of training")
- parser.add_argument("--task", required=True, type=str, choices=["detect", "segment"], help="specify what kind of task")
-
- args = parser.parse_args()
- return args
-
- def train(task, yaml, epochs):
- if task == "detect":
- model = YOLO("yolov8n.pt") # load a pretrained model
- elif task == "segment":
- model = YOLO("yolov8n-seg.pt") # load a pretrained model
- else:
- print(colorama.Fore.RED + "Error: unsupported task:", task)
- raise
-
- results = model.train(data=yaml, epochs=epochs, imgsz=640) # train the model
-
- metrics = model.val() # It'll automatically evaluate the data you trained, no arguments needed, dataset and settings remembered
-
- model.export(format="onnx") #, dynamic=True) # export the model, cannot specify dynamic=True, opencv does not support
- # model.export(format="onnx", opset=12, simplify=True, dynamic=False, imgsz=640)
- model.export(format="torchscript") # libtorch
-
- if __name__ == "__main__":
- colorama.init()
- args = parse_args()
-
- train(args.task, args.yaml, args.epochs)
-
- print(colorama.Fore.GREEN + "====== execution completed ======")

执行结果如下图所示:会生成best.pt、best.onnx、best.torchscript
5.生成的best.onnx使用Netron进行可视化,结果如下图所示:
说明:
1).输入:images: float32[1,3,640,640] :与YOLOv8 detect一致,大小为3通道640*640
2).输出:包括2层,output0和output1
A.output0: float32[1,38,8400] :
a.8400:模型预测的所有box的数量,与YOLOv8 detect一致;
b.38: 每个框给出38个值:4:xc, yc, width, height;2:class, confidences;32:mask weights
B.output1: float32[1,32,160,160] :最终mask大小是160*160;output1中的masks实际上只是原型masks,并不代表最终masks。为了得到某个box的最终mask,你可以将每个mask与其对应的mask weight相乘,然后将所有这些乘积相加。此外,你可以在box上应用NMS,以获得具有特定置信度阈值的box子集
6.编写Python脚本实现predict:
- import colorama
- import argparse
- from ultralytics import YOLO
- import os
-
- def parse_args():
- parser = argparse.ArgumentParser(description="YOLOv8 predict")
- parser.add_argument("--model", required=True, type=str, help="model file")
- parser.add_argument("--dir_images", required=True, type=str, help="directory of test images")
- parser.add_argument("--dir_result", required=True, type=str, help="directory where the image results are saved")
-
- args = parser.parse_args()
- return args
-
- def get_images(dir):
- # supported image formats
- img_formats = (".bmp", ".jpeg", ".jpg", ".png", ".webp")
- images = []
-
- for file in os.listdir(dir):
- if os.path.isfile(os.path.join(dir, file)):
- # print(file)
- _, extension = os.path.splitext(file)
- for format in img_formats:
- if format == extension.lower():
- images.append(file)
- break
-
- return images
-
- def predict(model, dir_images, dir_result):
- model = YOLO(model) # load an model
- model.info() # display model information
-
- images = get_images(dir_images)
- # print("images:", images)
-
- os.makedirs(dir_result) #, exist_ok=True)
-
- for image in images:
- results = model.predict(dir_images+"/"+image)
- for result in results:
- # print(result)
- result.save(dir_result+"/"+image)
-
- if __name__ == "__main__":
- colorama.init()
- args = parse_args()
-
- predict(args.model, args.dir_images, args.dir_result)
-
- print(colorama.Fore.GREEN + "====== execution completed ======")

执行结果如下图所示:
其中一幅图像的分割结果如下图所示:以下是epochs设置为100时生成的best.pt的结果
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。