赞
踩
自onnx11版本及以后,onnx支持将nms操作嵌入到模型中。本博文将yolov8模型的nms操作嵌入到模型中可以大幅度的简化模型部署代码,提升模型推理速度(在以往大家都是使用opencv的库进行nms操作,CPU效率必然是不如GPU的)。同时修改了yolov8输出的格式,移除了每一个类别的conf信息,只保留了maxClassConf和maxClassId。
后续会补充C++、C#部署案例,目前仅有python onnxruntime部署案例。
使用以下代码即可将yolov8模型导出为onnx文件
from ultralytics import YOLO
model = YOLO("yolov8s.pt") # load a pretrained model (recommended for training)
path = model.export(
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。