赞
踩
目录
线性空间(linear space)或称为向量空间(vector space)是数学中的一个核心概念,它提供了一种方式来处理向量的加法和标量乘法操作。线性空间的概念不仅限于欧几里得空间中的几何向量,还广泛应用于函数、多项式、矩阵等对象。
设 V 是一个非空集合,F 是一个数域。若 V 上定义两种运算(向量加法和标量乘法)并满足一定条件,那么 V 可以被称为数域 F 上的线性空间(或向量空间)。这里,F 通常是实数域
为了使 V 成为数域 F 上的线性空间,V 中的元素(我们称之为向量)与 F 中的元素(称为标量)之间的运算必须满足一系列特定的性质或公理,这些性质保证了向量加法和标量乘法的合理性和一致性。具体来说,这些条件包括:
如果有一组向量 {v1,v2,…,vn} 和一组标量 {α1,α2,…,αn},则向量 α1v1+α2v2+⋯+αnvn 称为这些向量的一个线性组合。
给定一个向量空间 V 和 V 中的一组向量 {v1,v2,…,vn},这些向量的跨度是所有可能的线性组合α1v1 + α2v2 +⋯+ αnvn 形成的集合,其中 α1,α2,…,αn 是数域(比如实数或复数)中的标量。
一组向量 {v1,v2,…,vn} 被称为线性独立的,如果没有一组非全零标量 {α1,α2,…,αn} 使得 α1v1 + α2v2 +⋯+ αnvn = 0(可以理解为一组向量中的,没有任何一个向量可以表示为其它向量的线性组合,即构成的矩阵满秩时,则称这组向量线性无关)。如果一组向量不是线性独立的,则称这组向量是线性依赖的。(如果一组向量中至少有一个向量可以表示为其它向量的线性组合)
核,也称为零空间,是定义在线性映射 T: V→W 中的一个概念,其中 V 和 W 是向量空间,且它们可以是同一个空间或不同的空间。核是来自源空间 V 的所有向量的集合,这些向量通过映射 T 被送到目标空间 W 的零向量。形式上,核定义为:
其中 0W 表示 W 空间中的零向量。
像,也称为值域或范围,是线性映射 T: V→W 的另一个关键概念。它是所有可能的输出构成的集合,也就是通过映射 T 从源空间 V 到目标空间 W 的所有向量的集合。形式上,像定义为:
核和像之间存在一个重要的关系,它是线性代数中的一个基本定理,称为秩-零化度定理(Rank-Nullity Theorem):
这个定理说明了线性映射 T 从源空间 V 到目标空间 W 的作用方式,将 V 的维数分解为核的维数(零化度)和像的维数(秩)的和。
矩阵映射是将一个向量空间中的向量映射到另一个向量空间中的向量。在这种情况下,矩阵表示了这个映射,我们称之为线性变换。考虑一个线性变换 T,它将向量 x 映射到向量 y,用矩阵表示为 A,我们可以写成 y=Tx 或 y=Ax。
核是一个线性变换的一种特殊子集,它包括所有被映射到零向量的向量。具体来说,对于一个线性变换 T,它的核是一个向量空间,包括所有满足 T(x)=0 的 x。在矩阵表示中,核是由矩阵 A 的零空间所定义的,即 Ax=0 的所有 x 的集合。(即通过这个线性映射,将 x 映射为 0 的集合称为核)
像是一个线性变换的另一个特殊子集,它包括所有映射到的向量。具体来说,对于一个线性变换 T,它的像是一个向量空间,包括所有满足 y=T(x) 的 y。在矩阵表示中,像是由矩阵 A 的列空间所定义的,即所有可以表示为线性组合 Ax 的向量 y 的集合。
线性空间(向量空间)的维数、基与坐标是理解和应用线性代数中最核心的概念之一。它们为研究和描述向量空间提供了重要的工具。
维数是用来描述一个线性空间的“大小”或复杂度的。具体来说,一个线性空间的维数定义为其任一基中向量的数量。这意味着:
基是线性空间中的一组向量,满足两个条件:线性独立和跨度等于整个空间。这意味着:
基的概念是极其重要的,因为它为线性空间中的向量提供了一种“坐标表示”。一个向量空间可以有多个不同的基,但所有基都有相同数量的向量,即该空间的维数。
一旦选定了一个线性空间的基,空间中的每个向量都可以唯一地表示为基向量的线性组合。这组线性组合的系数称为该向量相对于所选基的坐标。坐标提供了一种量化向量的方法,将抽象的向量概念转化为具体的数值列表。
坐标变换:当改变基时,可以通过线性变换将向量在旧基下的坐标转换为在新基下的坐标。
假设我们有一个二维向量空间
线性变换(或线性映射)是线性代数中的一个核心概念,描述了如何通过两个向量空间之间的一种特殊函数关系来转换向量。这种映射尊重向量空间中向量加法和标量乘法的结构。
给定两个向量空间 V 和 W,它们都是在同一个数域 F 上,一个线性变换 T 是一个函数,T: V→W,满足以下两个条件对于所有 u,v∈V 和所有标量 c∈F:
如果一个函数满足上述两个条件,我们称它为线性的。
线性映射的性质深刻影响了它们的行为和应用:
特征值和特征向量是研究线性变换性质的重要工具,它们在解决实际问题中扮演着核心角色,如在稳定性分析、系统动力学、量子力学等领域。
给定一个线性变换 T:V→V,其中 V 是数域 F 上的一个向量空间。如果存在一个标量 λ∈F 和一个非零向量 v∈V 使得:
则称 λ 是 T 的一个特征值(eigenvalue),v 是对应于 λ 的一个特征向量(eigenvector)。
直观上,特征向量是在线性变换下方向不变的向量,而特征值则表示特征向量在变换下的伸缩因子。
在实际计算中,特征值和特征向量通常通过将线性变换表示为矩阵来找到。设 A 是线性变换 T 在某基下的矩阵表示。那么,寻找特征值和特征向量等价于解方程:
或者等价于解:
其中 I 是单位矩阵,v 是非零向量。这是一个齐次线性方程组,非平凡解存在的条件是系数矩阵的行列式为零:
这个方程称为特征方程,解此方程可得特征值 λ,进而可以求出相应的特征向量 v。
线性子空间(或简称子空间)是线性代数中的一个核心概念,它描述了向量空间内满足特定条件的向量集合。具体来说,一个线性子空间是原向量空间的一个子集,这个子集本身也构成一个向量空间,遵循原空间定义的加法和标量乘法规则。
给定一个向量空间 V,如果 V 的一个子集 W 满足以下条件,则 W 是 V 的一个线性子空间:
1. 零向量:W 包含 V 的零向量。
2. 封闭性:
即从 W 中取任意两个向量进行加法运算,或将 W 中的向量与任意标量相乘,结果仍然在 W 中。
线性空间是一个集合,其中的元素称为向量,这些向量可以通过加法和标量乘法进行组合,且满足特定的公理,如加法的交换律和结合律、加法和标量乘法的分配律等。线性空间的概念抽象化和广泛化了向量的概念,不仅包括几何向量,还包括函数、多项式、矩阵等其他数学对象。
线性空间的研究重点包括基和维数的概念,这些概念帮助我们理解空间的结构和度量空间的“大小”。
线性变换是定义在两个线性空间之间的一类特殊函数,它保留了向量加法和标量乘法的操作。线性变换可以视为一种将一个向量空间中的向量“转换”到另一个向量空间中的过程,同时保留向量空间的线性结构。
线性变换的研究帮助我们理解和分析不同线性空间之间的关系,以及空间内部的结构如何因变换而改变。
矩阵分析-第2版(清华大学出版社)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。