赞
踩
下载相应的数据库
!pip install --upgrade -q spark_ai_python
from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
from sparkai.core.messages import ChatMessage
import json
#星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
#星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
SPARKAI_APP_ID = '2e001699'
SPARKAI_API_SECRET = 'ZmU2YTliYmU1YjViODlkMDYwOWZlOTc4'
SPARKAI_API_KEY = '52a07d74ef95aead407a958f448d4464'
#星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
SPARKAI_DOMAIN = 'generalv3.5'
申领大模型API来自:https://console.xfyun.cn/app/myapp
def get_completions(text):
messages = [ChatMessage(
role="user",
content=text
)]
spark = ChatSparkLLM(
spark_api_url=SPARKAI_URL,
spark_app_id=SPARKAI_APP_ID,
spark_api_key=SPARKAI_API_KEY,
spark_api_secret=SPARKAI_API_SECRET,
spark_llm_domain=SPARKAI_DOMAIN,
streaming=False,
)
handler = ChunkPrintHandler()
a = spark.generate([messages], callbacks=[handler])
return a.generations[0][0].text
# 测试模型配置是否正确
text = "你好"
get_completions(text)
def read_json(json_file_path):
"""读取json文件"""
with open(json_file_path, 'r') as f:
data = json.load(f)
return data
def write_json(json_file_path, data):
"""写入json文件"""
with open(json_file_path, 'w') as f:
json.dump(data, f, ensure_ascii=False, indent=4)
# 读取数据
train_data = read_json("dataset/train.json")
test_data = read_json("dataset/test_data.json")
4. 加载决策树模型进行训练
model = LGBMClassifier(verbosity=-1)
model.fit(train.iloc[:, 2:].values, train['Label'])
pred = model.predict(test.iloc[:, 1:].values, )
import json
class JsonFormatError(Exception):
def __init__(self, message):
self.message = message
super().__init__(self.message)
def check_and_complete_json_format(data):
required_keys = {
"基本信息-姓名": str,
"基本信息-手机号码": str,
"基本信息-邮箱": str,
"基本信息-地区": str,
"基本信息-详细地址": str,
"基本信息-性别": str,
"基本信息-年龄": str,
"基本信息-生日": str,
"咨询类型": list,
"意向产品": list,
"购买异议点": list,
"客户预算-预算是否充足": str,
"客户预算-总体预算金额": str,
"客户预算-预算明细": str,
"竞品信息": str,
"客户是否有意向": str,
"客户是否有卡点": str,
"客户购买阶段": str,
"下一步跟进计划-参与人": list,
"下一步跟进计划-时间点": str,
"下一步跟进计划-具体事项": str
}
if not isinstance(data, list):
raise JsonFormatError("Data is not a list")
for item in data:
if not isinstance(item, dict):
raise JsonFormatError("Item is not a dictionary")
for key, value_type in required_keys.items():
if key not in item:
item[key] = [] if value_type == list else ""
if not isinstance(item[key], value_type):
raise JsonFormatError(f"Key '{key}' is not of type {value_type.__name__}")
if value_type == list and not all(isinstance(i, str) for i in item[key]):
raise JsonFormatError(f"Key '{key}' does not contain all strings in the list")
return data
# Example usage:
json_data = '''
[
{
"基本信息-姓名": "张三",
"基本信息-手机号码": "12345678901",
"基本信息-邮箱": "zhangsan@example.com",
"基本信息-地区": "北京市",
"基本信息-详细地址": "朝阳区某街道",
"基本信息-性别": "男",
"基本信息-年龄": "30",
"基本信息-生日": "1990-01-01",
"咨询类型": ["询价"],
"意向产品": ["产品A"],
"购买异议点": ["价格高"],
"客户预算-预算是否充足": "充足",
"客户预算-总体预算金额": "10000",
"客户预算-预算明细": "详细预算内容",
"竞品信息": "竞争对手B",
"客户是否有意向": "有意向",
"客户是否有卡点": "无卡点",
"客户购买阶段": "合同中",
"下一步跟进计划-参与人": ["客服A"],
"下一步跟进计划-时间点": "2024-07-01",
"下一步跟进计划-具体事项": "沟通具体事项"
}
]
'''
try:
data = json.loads(json_data)
completed_data = check_and_complete_json_format(data)
print("Completed JSON:", json.dumps(completed_data, ensure_ascii=False, indent=4))
except JsonFormatError as e:
print(f"JSON format error: {e.message}")# 5. 保存结果文件到本地
pd.DataFrame(
{
'uuid': test['uuid'],
'Label': pred
}
).to_csv('submit.csv', index=None)
from tqdm import tqdm
retry_count = 5 # 重试次数
result = []
error_data = []
for index, data in tqdm(enumerate(test_data)):
index += 1
is_success = False
for i in range(retry_count):
try:
res = get_completions(PROMPT_EXTRACT.format(content=data["chat_text"]))
infos = convert_all_json_in_text_to_dict(res)
infos = check_and_complete_json_format(infos)
result.append({
"infos": infos,
"index": index
})
is_success = True
break
except Exception as e:
print("index:", index, ", error:", e)
continue
if not is_success:
data["index"] = index
error_data.append(data)
write_json("output.json", result)
print("index:", index, ", error:", e)
continue
if not is_success:
data["index"] = index
error_data.append(data)
## 8、保存输出
```python
write_json("output.json", result)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。