赞
踩
- def intersect(box_a, box_b):
- max_xy = np.minimum(box_a[:, 2:], box_b[2:])
- min_xy = np.maximum(box_a[:, :2], box_b[:2])
- inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf)
- return inter[:, 0] * inter[:, 1]
-
-
- def jaccard_numpy(box_a, box_b):
- """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
- is simply the intersection over union of two boxes.
- E.g.:
- Args:
- box_a: Multiple bounding boxes, Shape: [num_boxes,4]
- box_b: Single bounding box, Shape: [4]
- Return:
- jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
- """
- inter = intersect(box_a, box_b)
- area_a = ((box_a[:, 2]-box_a[:, 0]) *
- (box_a[:, 3]-box_a[:, 1])) # [A,B]
- area_b = ((box_b[2]-box_b[0]) *
- (box_b[3]-box_b[1])) # [A,B]
- union = area_a + area_b - inter
- return inter / union # [A,B]

人工修正后的每一个框与算法输出的所有框去计算IOU,取出IOU大于0.9的算法输出框
- def compute_IOU(algrim_bboxs,fix_bboxs):
- # print('algrim_bboxs:', algrim_bboxs)
- # print('fix_bboxs:', fix_bboxs)
- for i, fix_bbox in enumerate(fix_bboxs):
- print('fix_bbox:', fix_bbox)
- fix_x1, fix_y1, fix_x2, fix_y2 = fix_bbox
- x1, y1, x2, y2 = algrim_bboxs[:,0], algrim_bboxs[:,1], algrim_bboxs[:,-2], algrim_bboxs[:,-1]
- area = (y2-y1)*(x2-x1)
- inter = np.maximum((np.minimum(x2,fix_x2) - np.maximum(x1,fix_x1)),0)*np.maximum((np.minimum(y2,fix_y2) - np.maximum(y1, fix_y1)),0)
- union = area+(fix_y2-fix_y1)*(fix_x2-fix_x1)-inter
- IOU = inter/union
- # print('IOU:', IOU)
- index = np.where(IOU > 0.9)[0]
- print('algrim_bboxs[index]:', algrim_bboxs[index])
注释:下面的代码假设了第0行是IOU最大的,那么其余做NMS计算
boxes=np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) y1 = boxes[:, 0] x1 = boxes[:, 1] y2 = boxes[:, 2] x2 = boxes[:, 3] area = (y2 - y1) * (x2 - x1) print('area=',area) box_area=area[0] print('box_area=',box_area) boxes_area=area[1:] print('boxes_area=',boxes_area) box=boxes[0] y1 = np.maximum(box[0], boxes[1:, 0]) y2 = np.minimum(box[2], boxes[1:, 2]) x1 = np.maximum(box[1], boxes[1:, 1]) x2 = np.minimum(box[3], boxes[1:, 3]) #注意与0判断 若不想交返回0值,即intersection为0 intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) print('intersection=',intersection) union = box_area + boxes_area - intersection[:] print('union=',union) iou = intersection / union print('iou=',iou)
scores = np.array([0.5, 0.7, 0.3, 0.2]) ixs=scores.argsort()[::-1] print('ixs=',ixs) boxes=np.array([[1,2,3,4], [1.2, 0.4,2.1, 0.8], [5,6,7,8], [9,10,11,12]]) y1 = boxes[:, 0] x1 = boxes[:, 1] y2 = boxes[:, 2] x2 = boxes[:, 3] area = (y2 - y1) * (x2 - x1) print('area=',area) box_area=area[ixs[0]] print('box_area=',box_area) boxes_area=area[ixs[1:]] print('boxes_area=',boxes_area) box=boxes[ixs[0]] boxes=boxes[ixs[1:]] y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) #注意与0判断 若不想交返回0值,即intersection为0 intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) print('intersection=',intersection) union = box_area + boxes_area - intersection[:] print('union=',union) iou = intersection / union print('iou=',iou)
- scores=np.array([0.8,0.4,0.7,0.2,0.5])
- ixs = scores.argsort()[::-1]
- print('ixs=',ixs)
- #iou要比score少一个数值,因为iou的计算是由score的第一个值确定的,故下面的np.where要加1
- iou=np.array([0.3,0.6,0.1,0.4])
- threshold=0.3
- remove_ixs = np.where(iou > threshold)[0]+1
- print('remove_ixs=',remove_ixs)
- # Remove indices of the picked and overlapped boxes.
- ixs = np.delete(ixs, remove_ixs)
- print('ixs=',ixs)
- ixs = np.delete(ixs, 0)
- print('ixs=',ixs)
- scores = np.array([0.8, 0.4, 0.7, 0.2, 0.5])
- ixs = scores.argsort()[::-1]
- while len(ixs) > 0:
- print('================================')
- print('ixs=', ixs)
- # iou要比score少一个数值,因为iou的计算是由score的第一个值确定的,故下面的np.where要加1
- iou = np.array([0.3, 0.6, 0.1, 0.4])
- threshold = 0.3
- remove_ixs = np.where(iou > threshold)[0] + 1
- print('remove_ixs=', remove_ixs)
- # Remove indices of the picked and overlapped boxes.
- ixs = np.delete(ixs, remove_ixs)
- print('ixs=', ixs)
- ixs = np.delete(ixs, 0)
- print('ixs=', ixs)
- def py_cpu_nms(dets, thresh):
- """Pure Python NMS baseline."""
- x1 = dets[:, 0]
- y1 = dets[:, 1]
- x2 = dets[:, 2]
- y2 = dets[:, 3]
- scores = dets[:, 4]
-
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- print('order',order)
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
-
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
-
- print('ovr=',ovr)
- print('np.where(ovr <= thresh)',np.where(ovr <= thresh))
- inds = np.where(ovr <= thresh)[0]
- print('inds=',inds)
- print('inds + 1',inds + 1)
- print('order[inds + 1]',order[inds + 1])
- order = order[inds + 1]
- print('order=',order)
-
- return keep
- def nms():
- # ###self nms
- result = [np.array([[7.9301813e+02, 6.3052429e+02, 8.9795898e+02,
- 7.2513965e+02,9.9307442e-01],
- [8.0682990e+02, 6.4606281e+02, 8.7198071e+02, 7.1328979e+02,
- 9.5732883e-02]], dtype=np.float32)]
- ##faster rcnn nms
- keep=py_cpu_nms(result[0],0.7)
- print('keep=',keep)
- for i in keep:
- print('i=',i)
- print(result[0][i])

此处大于0.7IOU的框就抑制, 小于0.7的就留下.
- def compute_IOU_():
- import numpy as np
- import shapely
- from shapely.geometry import Polygon, MultiPoint # 多边形
-
- path = './134.jpg'
- img = cv2.imread(path)
- print('img.shape:', img.shape)
- line1 = [728, 252, 908, 215, 934, 312, 752, 355] # 四边形四个点坐标的一维数组表示,[x,y,x,y....]
- line2 = [741, 262, 907, 228, 923, 308, 758, 342]
-
- # #debug to show
- # line1 = np.array(line1).reshape(4, 2)
- # line2 = np.array(line2).reshape(4, 2)
- # cv2.polylines(img, [np.array(line1).reshape(-1, 1, 2)], True, (0, 255, 0), thickness=2)
- # cv2.polylines(img, [np.array(line2).reshape(-1, 1, 2)], True, (0, 0, 255), thickness=2)
- # cv2.imwrite('134_with_rect.jpg',img)
-
- line1_box = np.array(line1).reshape(4, 2) # 四边形二维坐标表示
- # 凸多边形
- # poly1 = Polygon(line1_box).convex_hull
- #凸多边形与凹多边形
- poly1 = Polygon(line1_box)#.convex_hull # python四边形对象,会自动计算四个点,最后四个点顺序为:左上 左下 右下 右上 左上
- print(Polygon(line1_box).convex_hull)
- line2_box = np.array(line2).reshape(4, 2)
- # 凸多边形
- # poly2 = Polygon(line2_box).convex_hull
- # 凸多边形与凹多边形
- poly2 = Polygon(line2_box)
- print(Polygon(line2_box).convex_hull)
-
- union_poly = np.concatenate((line1_box, line2_box)) # 合并两个box坐标,变为8*2
- # print(union_poly)
- print(MultiPoint(union_poly).convex_hull) # 包含两四边形最小的多边形点
- if not poly1.intersects(poly2): # 如果两四边形不相交
- iou = 0
- else:
- try:
- inter_area = poly1.intersection(poly2).area # 相交面积
- print(inter_area)
- union_area = MultiPoint(union_poly).convex_hull.area
- print(union_area)
- if union_area == 0:
- iou = 0
- # iou = float(inter_area) / (union_area-inter_area) #错了
- iou = float(inter_area) / union_area
- except shapely.geos.TopologicalError:
- print('shapely.geos.TopologicalError occured, iou set to 0')
- iou = 0
- print('line1_box:', line1_box)
- print('iou:', iou)

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。