当前位置:   article > 正文

【PCL】ICP 源码分析_pcl estimaterigidtransform

pcl estimaterigidtransform


一、ICP 介绍

ICP(Iterative Closest Point),即最近点迭代算法,是最为经典的点云配准算法。其方法在于,通过求取源点云和目标点云之间的对应点对,基于对应点对构造平移、旋转矩阵,利用所求矩阵,将源点云变换到目标点云位置,计算变换后点云与目标点云误差函数,若误差函数值大于设定阈值且小于设定迭代次数,则迭代进行上述运算直到满足给定误差要求。

ICP 算法采用最小二乘法计算目标函数,原理简单且具有较高精度,但是由于采用迭代计算,导致算法计算速度较慢,同时采用 ICP 进行配准计算时,其对待配准点云初始位置有一定要求,若所选初始位置不合理,会导致算法陷入局部最优。

接下来将从,ICP 使用出发,进一步分析源码及公式推导。


二、demo 示例

2.1 代码

demo 示例,输入点云平移,反求转换矩阵(ICP 使用及迭代跳出规则,见注释)。

/** \brief @b IterativeClosestPoint provides a base implementation of the Iterative Closest Point algorithm. 
  * The transformation is estimated based on Singular Value Decomposition (SVD).
  *
  * The algorithm has several termination criteria:
  *
  * <ol>
  * <li>Number of iterations has reached the maximum user imposed number of iterations (via \ref setMaximumIterations)</li>
  * <li>The epsilon (difference) between the previous transformation and the current estimated transformation is smaller than an user imposed value (via \ref setTransformationEpsilon)</li>
  * <li>The sum of Euclidean squared errors is smaller than a user defined threshold (via \ref setEuclideanFitnessEpsilon)</li>
  * </ol>
  *
  *
  * Usage example:
  * \code
  * IterativeClosestPoint<PointXYZ, PointXYZ> icp;
  * // Set the input source and target
  * icp.setInputCloud (cloud_source);
  * icp.setInputTarget (cloud_target);
  *
  * // Set the max correspondence distance to 5cm (e.g., correspondences with higher distances will be ignored)
  * icp.setMaxCorrespondenceDistance (0.05);
  * // Set the maximum number of iterations (criterion 1)
  * icp.setMaximumIterations (50);
  * // Set the transformation epsilon (criterion 2)
  * icp.setTransformationEpsilon (1e-8);
  * // Set the euclidean distance difference epsilon (criterion 3)
  * icp.setEuclideanFitnessEpsilon (1);
  *
  * // Perform the alignment
  * icp.align (cloud_source_registered);
  *
  * // Obtain the transformation that aligned cloud_source to cloud_source_registered
  * Eigen::Matrix4f transformation = icp.getFinalTransformation ();
  * \endcode
  *
  * \author Radu B. Rusu, Michael Dixon
  * \ingroup registration
  */
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/icp.h>

int main() {
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_source(new pcl::PointCloud<pcl::PointXYZ>);
	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_target(new pcl::PointCloud<pcl::PointXYZ>);
	// fill in the cloud_source data
	cloud_source->width = 5;
	cloud_source->height = 1;
	cloud_source->is_dense = false;
	cloud_source->points.resize(cloud_source->width * cloud_source->height);
	for (size_t i = 0; i < cloud_source->points.size(); ++i) {
		cloud_source->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
		cloud_source->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
		cloud_source->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);
	}
	std::cout << "cloud_source has " << cloud_source->points.size() << " data points: " << std::endl;
	for (size_t i = 0; i < cloud_source->points.size(); ++i) {
		std::cout << "    " << cloud_source->points[i].x << "  " 
			<< cloud_source->points[i].y << "  " << cloud_source->points[i].z << std::endl;
	}
	*cloud_target = *cloud_source;
	for (size_t i = 0; i < cloud_target->points.size(); ++i) {
		cloud_target->points[i].x = cloud_target->points[i].x + 0.7f;
	}
	std::cout << "cloud_target has " << cloud_target->points.size() << " data points: " << std::endl;
	for (size_t i = 0; i < cloud_target->points.size(); ++i) {
		std::cout << "    " << cloud_target->points[i].x << "  " 
			<< cloud_target->points[i].y << "  " << cloud_target->points[i].z << std::endl;
	}
	pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
	icp.setInputSource(cloud_source);
	icp.setInputTarget(cloud_target);
	pcl::PointCloud<pcl::PointXYZ> Final;
	icp.align(Final);
	std::cout << "converged: " << icp.hasConverged() << "; score: " << icp.getFitnessScore() << std::endl;
	std::cout << "transformation: " << std::endl << icp.getFinalTransformation() << std::endl;
	// std::cout << Final << std::endl;
	std::cout << "transformed cloud_source has " << cloud_source->points.size() << " data points: " << std::endl;
	for (size_t i = 0; i < Final.points.size(); ++i) {
		std::cout << "    " << Final.points[i].x << "  " 
			<< Final.points[i].y << "  " << Final.points[i].z << std::endl;
	}
	return (0);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85

2.2 输出结果


三、源码分析

3.1 align() 函数

上述 demo 示例,点云配准在 align() 这个函数实现。align() 实现代码形参 output 为传入参数 Final,即由 cloud_source 最终转换点云。

//
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::Registration<PointSource, PointTarget, Scalar>::align (PointCloudSource &output)
{
  align (output, Matrix4::Identity ());
}

//
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::Registration<PointSource, PointTarget, Scalar>::align (PointCloudSource &output, const Matrix4& guess)
{
  if (!initCompute ()) 
    return;

  // Resize the output dataset
  if (output.points.size () != indices_->size ())
    output.points.resize (indices_->size ());
  // Copy the header
  output.header   = input_->header;
  // Check if the output will be computed for all points or only a subset
  if (indices_->size () != input_->points.size ())
  {
    output.width    = static_cast<uint32_t> (indices_->size ());
    output.height   = 1;
  }
  else
  {
    output.width    = static_cast<uint32_t> (input_->width);
    output.height   = input_->height;
  }
  output.is_dense = input_->is_dense;

  // Copy the point data to output
  for (size_t i = 0; i < indices_->size (); ++i)
    output.points[i] = input_->points[(*indices_)[i]];

  // Set the internal point representation of choice unless otherwise noted
  if (point_representation_ && !force_no_recompute_) 
    tree_->setPointRepresentation (point_representation_);

  // Perform the actual transformation computation
  converged_ = false;
  final_transformation_ = transformation_ = previous_transformation_ = Matrix4::Identity ();

  // Right before we estimate the transformation, we set all the point.data[3] values to 1 to aid the rigid 
  // transformation
  for (size_t i = 0; i < indices_->size (); ++i)
    output.points[i].data[3] = 1.0;

  computeTransformation (output, guess);

  deinitCompute ();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53

3.1.1 computeTransformation() 函数

上述 align() 实现,主要是 computeTransformation() 函数,此函数前的预备工作,关系不大。computeTransformation() 函数,其主体是一个 do-while 循环。这里要说三个内容:correspondence_estimation_、correspondence_rejectors_ 和 convergence_criteria_,三个变量的作用分别是查找最近点、剔除错误对应点、收敛准则。因为是 do-while 循环,因此合理推测收敛准则的作用是跳出循环。

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation (
    PointCloudSource &output, const Matrix4 &guess)
{
  // Point cloud containing the correspondences of each point in <input, indices>
  PointCloudSourcePtr input_transformed (new PointCloudSource);

  nr_iterations_ = 0;
  converged_ = false;

  // Initialise final transformation to the guessed one
  final_transformation_ = guess;

  // If the guessed transformation is non identity
  if (guess != Matrix4::Identity ())
  {
    input_transformed->resize (input_->size ());
     // Apply guessed transformation prior to search for neighbours
    transformCloud (*input_, *input_transformed, guess);
  }
  else
    *input_transformed = *input_;
 
  transformation_ = Matrix4::Identity ();

  // Make blobs if necessary
  determineRequiredBlobData ();
  PCLPointCloud2::Ptr target_blob (new PCLPointCloud2);
  if (need_target_blob_)
    pcl::toPCLPointCloud2 (*target_, *target_blob);

  // Pass in the default target for the Correspondence Estimation/Rejection code
  correspondence_estimation_->setInputTarget (target_);
  if (correspondence_estimation_->requiresTargetNormals ())
    correspondence_estimation_->setTargetNormals (target_blob);
  // Correspondence Rejectors need a binary blob
  for (size_t i = 0; i < correspondence_rejectors_.size (); ++i)
  {
    registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
    if (rej->requiresTargetPoints ())
      rej->setTargetPoints (target_blob);
    if (rej->requiresTargetNormals () && target_has_normals_)
      rej->setTargetNormals (target_blob);
  }

  convergence_criteria_->setMaximumIterations (max_iterations_);
  convergence_criteria_->setRelativeMSE (euclidean_fitness_epsilon_);
  convergence_criteria_->setTranslationThreshold (transformation_epsilon_);
  convergence_criteria_->setRotationThreshold (1.0 - transformation_epsilon_);

  // Repeat until convergence
  do
  {
    // Get blob data if needed
    PCLPointCloud2::Ptr input_transformed_blob;
    if (need_source_blob_)
    {
      input_transformed_blob.reset (new PCLPointCloud2);
      toPCLPointCloud2 (*input_transformed, *input_transformed_blob);
    }
    // Save the previously estimated transformation
    previous_transformation_ = transformation_;

    // Set the source each iteration, to ensure the dirty flag is updated
    correspondence_estimation_->setInputSource (input_transformed);
    if (correspondence_estimation_->requiresSourceNormals ())
      correspondence_estimation_->setSourceNormals (input_transformed_blob);
    // Estimate correspondences
    if (use_reciprocal_correspondence_)
      correspondence_estimation_->determineReciprocalCorrespondences (*correspondences_, corr_dist_threshold_);
    else
      correspondence_estimation_->determineCorrespondences (*correspondences_, corr_dist_threshold_);

    //if (correspondence_rejectors_.empty ())
    CorrespondencesPtr temp_correspondences (new Correspondences (*correspondences_));
    for (size_t i = 0; i < correspondence_rejectors_.size (); ++i)
    {
      registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
      PCL_DEBUG ("Applying a correspondence rejector method: %s.\n", rej->getClassName ().c_str ());
      if (rej->requiresSourcePoints ())
        rej->setSourcePoints (input_transformed_blob);
      if (rej->requiresSourceNormals () && source_has_normals_)
        rej->setSourceNormals (input_transformed_blob);
      rej->setInputCorrespondences (temp_correspondences);
      rej->getCorrespondences (*correspondences_);
      // Modify input for the next iteration
      if (i < correspondence_rejectors_.size () - 1)
        *temp_correspondences = *correspondences_;
    }

    size_t cnt = correspondences_->size ();
    // Check whether we have enough correspondences
    if (static_cast<int> (cnt) < min_number_correspondences_)
    {
      PCL_ERROR ("[pcl::%s::computeTransformation] Not enough correspondences found. Relax your threshold parameters.\n", getClassName ().c_str ());
      convergence_criteria_->setConvergenceState(pcl::registration::DefaultConvergenceCriteria<Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);
      converged_ = false;
      break;
    }

    // Estimate the transform
    transformation_estimation_->estimateRigidTransformation (*input_transformed, *target_, *correspondences_, transformation_);

    // Tranform the data
    transformCloud (*input_transformed, *input_transformed, transformation_);

    // Obtain the final transformation    
    final_transformation_ = transformation_ * final_transformation_;

    ++nr_iterations_;

    // Update the vizualization of icp convergence
    //if (update_visualizer_ != 0)
    //  update_visualizer_(output, source_indices_good, *target_, target_indices_good );

    converged_ = static_cast<bool> ((*convergence_criteria_));
  }
  while (!converged_);

  // Transform the input cloud using the final transformation
  PCL_DEBUG ("Transformation is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n", 
      final_transformation_ (0, 0), final_transformation_ (0, 1), final_transformation_ (0, 2), final_transformation_ (0, 3),
      final_transformation_ (1, 0), final_transformation_ (1, 1), final_transformation_ (1, 2), final_transformation_ (1, 3),
      final_transformation_ (2, 0), final_transformation_ (2, 1), final_transformation_ (2, 2), final_transformation_ (2, 3),
      final_transformation_ (3, 0), final_transformation_ (3, 1), final_transformation_ (3, 2), final_transformation_ (3, 3));

  // Copy all the values
  output = *input_;
  // Transform the XYZ + normals
  transformCloud (*input_, output, final_transformation_);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
3.1.1.1 determineCorrespondences() 函数

上述 computeTransformation() 实现,其中关键的第一步 determineCorrespondences()(或 determineReciprocalCorrespondences(),互为最近邻,更严格)函数,KdTree 查找一一对应点对。

// determineCorrespondences() 函数
// D:\PCL 1.8.1\include\pcl-1.8\pcl\registration\impl\correspondence_estimation.hpp
///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>::determineCorrespondences (
    pcl::Correspondences &correspondences, double max_distance)
{
  if (!initCompute ())
    return;

  double max_dist_sqr = max_distance * max_distance;

  correspondences.resize (indices_->size ());

  std::vector<int> index (1);
  std::vector<float> distance (1);
  pcl::Correspondence corr;
  unsigned int nr_valid_correspondences = 0;
  
  // Check if the template types are the same. If true, avoid a copy.
  // Both point types MUST be registered using the POINT_CLOUD_REGISTER_POINT_STRUCT macro!
  if (isSamePointType<PointSource, PointTarget> ())
  {
    // Iterate over the input set of source indices
    for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx)
    {
      tree_->nearestKSearch (input_->points[*idx], 1, index, distance);
      if (distance[0] > max_dist_sqr)
        continue;

      corr.index_query = *idx;
      corr.index_match = index[0];
      corr.distance = distance[0];
      correspondences[nr_valid_correspondences++] = corr;
    }
  }
  else
  {
    PointTarget pt;
    
    // Iterate over the input set of source indices
    for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx)
    {
      // Copy the source data to a target PointTarget format so we can search in the tree
      copyPoint (input_->points[*idx], pt);

      tree_->nearestKSearch (pt, 1, index, distance);
      if (distance[0] > max_dist_sqr)
        continue;

      corr.index_query = *idx;
      corr.index_match = index[0];
      corr.distance = distance[0];
      correspondences[nr_valid_correspondences++] = corr;
    }
  }
  correspondences.resize (nr_valid_correspondences);
  deinitCompute ();
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
3.1.1.2 estimateRigidTransformation() 函数

computeTransformation() 实现,覆盖 ICP 算法流程,主要包括 determineCorrespondences() 函数(见 3.1.1.1 节),estimateRigidTransformation() 函数及 transformCloud() 函数(见 3.1.1.3 节)。

  • determineCorrespondences()(或 determineReciprocalCorrespondences(),互为最近邻,更严格),KdTree 查找一一对应点对;
  • estimateRigidTransformation()计算平移、旋转变换矩阵(ICP 算法核心所在,重难点)
    • 传入第三个参数为对应点对(查询其定义即点对索引数组),故根据重载函数规则,源码从第 67 行开始,之后再次调用重载函数,最终两种方式之一求解
      • a) 利用 Eigen 库里的 umeyama 直接求解,其实现包含常见矩阵变换和 SVD 分解过程
      • b) 先求点云中心点,常规 SVD 分解
  • transformCloud(),do-while 中,用当前新求变换矩阵,在每一次迭代中更新不断平移、旋转的 cloud_source 点云副本;do-while 后,用最终变换矩阵,对初始 cloud_source 点云进行变换,并以引用传回变换后点云。

查看类图可以知道,包括 SVD 奇异值分解算法,查看 transformation_estimation_svd.hpp 中的 TransformationEstimationSVD 类(含链接)的 estimateRigidTransformation 方法(见下述,源码):

// estimateRigidTransformation() 函数
// D:\PCL 1.8.1\include\pcl-1.8\pcl\registration\impl\transformation_estimation_svd.hpp
#ifndef PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_
#define PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_

#include <pcl/common/eigen.h>

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{
  size_t nr_points = cloud_src.points.size ();
  if (cloud_tgt.points.size () != nr_points)
  {
    PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", nr_points, cloud_tgt.points.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{
  if (indices_src.size () != cloud_tgt.points.size ())
  {
    PCL_ERROR ("[pcl::TransformationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), cloud_tgt.points.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const std::vector<int> &indices_tgt,
    Matrix4 &transformation_matrix) const
{
  if (indices_src.size () != indices_tgt.size ())
  {
    PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), indices_tgt.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const pcl::Correspondences &correspondences,
    Matrix4 &transformation_matrix) const
{
  ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    ConstCloudIterator<PointSource>& source_it,
    ConstCloudIterator<PointTarget>& target_it,
    Matrix4 &transformation_matrix) const
{
  // Convert to Eigen format
  const int npts = static_cast <int> (source_it.size ());



  if (use_umeyama_)
  {
    Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_src (3, npts);
    Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_tgt (3, npts);

    for (int i = 0; i < npts; ++i)
    {
      cloud_src (0, i) = source_it->x;
      cloud_src (1, i) = source_it->y;
      cloud_src (2, i) = source_it->z;
      ++source_it;

      cloud_tgt (0, i) = target_it->x;
      cloud_tgt (1, i) = target_it->y;
      cloud_tgt (2, i) = target_it->z;
      ++target_it;
    }
    
    // Call Umeyama directly from Eigen (PCL patched version until Eigen is released)
    transformation_matrix = pcl::umeyama (cloud_src, cloud_tgt, false);
  }
  else
  {
    source_it.reset (); target_it.reset ();
    // <cloud_src,cloud_src> is the source dataset
    transformation_matrix.setIdentity ();

    Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt;
    // Estimate the centroids of source, target
    compute3DCentroid (source_it, centroid_src);
    compute3DCentroid (target_it, centroid_tgt);
    source_it.reset (); target_it.reset ();

    // Subtract the centroids from source, target
    Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean;
    demeanPointCloud (source_it, centroid_src, cloud_src_demean);
    demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean);

    getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix);
  }
}

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::getTransformationFromCorrelation (
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_src_demean,
    const Eigen::Matrix<Scalar, 4, 1> &centroid_src,
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_tgt_demean,
    const Eigen::Matrix<Scalar, 4, 1> &centroid_tgt,
    Matrix4 &transformation_matrix) const
{
  transformation_matrix.setIdentity ();

  // Assemble the correlation matrix H = source * target'
  Eigen::Matrix<Scalar, 3, 3> H = (cloud_src_demean * cloud_tgt_demean.transpose ()).topLeftCorner (3, 3);

  // Compute the Singular Value Decomposition
  Eigen::JacobiSVD<Eigen::Matrix<Scalar, 3, 3> > svd (H, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Eigen::Matrix<Scalar, 3, 3> u = svd.matrixU ();
  Eigen::Matrix<Scalar, 3, 3> v = svd.matrixV ();

  // Compute R = V * U'
  if (u.determinant () * v.determinant () < 0)
  {
    for (int x = 0; x < 3; ++x)
      v (x, 2) *= -1;
  }

  Eigen::Matrix<Scalar, 3, 3> R = v * u.transpose ();

  // Return the correct transformation
  transformation_matrix.topLeftCorner (3, 3) = R;
  const Eigen::Matrix<Scalar, 3, 1> Rc (R * centroid_src.head (3));
  transformation_matrix.block (0, 3, 3, 1) = centroid_tgt.head (3) - Rc;
}

//#define PCL_INSTANTIATE_TransformationEstimationSVD(T,U) template class PCL_EXPORTS pcl::registration::TransformationEstimationSVD<T,U>;

#endif /* PCL_REGISTRATION_TRANSFORMATION_ESTIMATION_SVD_HPP_ */
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
3.1.1.3 transformCloud() 函数

computeTransformation() 实现,其中关键的第三步 transformCloud() 函数,do-while 中,用当前新求变换矩阵,在每一次迭代中更新不断平移、旋转的 cloud_source 点云副本;do-while 后,用最终变换矩阵,对初始 cloud_source 点云进行变换,并以引用传回变换后点云。transformCloud() 函数对是否考虑点云法向量即是否对法向量进行同步旋转。

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::IterativeClosestPoint<PointSource, PointTarget, Scalar>::transformCloud (
    const PointCloudSource &input, 
    PointCloudSource &output, 
    const Matrix4 &transform)
{
  Eigen::Vector4f pt (0.0f, 0.0f, 0.0f, 1.0f), pt_t;
  Eigen::Matrix4f tr = transform.template cast<float> ();

  // XYZ is ALWAYS present due to the templatization, so we only have to check for normals
  if (source_has_normals_)
  {
    Eigen::Vector3f nt, nt_t;
    Eigen::Matrix3f rot = tr.block<3, 3> (0, 0);

    for (size_t i = 0; i < input.size (); ++i)
    {
      const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]);
      uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]);
      memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float));
      memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float));
      memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float));

      if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) 
        continue;

      pt_t = tr * pt;

      memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float));
      memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float));
      memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float));

      memcpy (&nt[0], data_in + nx_idx_offset_, sizeof (float));
      memcpy (&nt[1], data_in + ny_idx_offset_, sizeof (float));
      memcpy (&nt[2], data_in + nz_idx_offset_, sizeof (float));

      if (!pcl_isfinite (nt[0]) || !pcl_isfinite (nt[1]) || !pcl_isfinite (nt[2])) 
        continue;

      nt_t = rot * nt;

      memcpy (data_out + nx_idx_offset_, &nt_t[0], sizeof (float));
      memcpy (data_out + ny_idx_offset_, &nt_t[1], sizeof (float));
      memcpy (data_out + nz_idx_offset_, &nt_t[2], sizeof (float));
    }
  }
  else
  {
    for (size_t i = 0; i < input.size (); ++i)
    {
      const uint8_t* data_in = reinterpret_cast<const uint8_t*> (&input[i]);
      uint8_t* data_out = reinterpret_cast<uint8_t*> (&output[i]);
      memcpy (&pt[0], data_in + x_idx_offset_, sizeof (float));
      memcpy (&pt[1], data_in + y_idx_offset_, sizeof (float));
      memcpy (&pt[2], data_in + z_idx_offset_, sizeof (float));

      if (!pcl_isfinite (pt[0]) || !pcl_isfinite (pt[1]) || !pcl_isfinite (pt[2])) 
        continue;

      pt_t = tr * pt;

      memcpy (data_out + x_idx_offset_, &pt_t[0], sizeof (float));
      memcpy (data_out + y_idx_offset_, &pt_t[1], sizeof (float));
      memcpy (data_out + z_idx_offset_, &pt_t[2], sizeof (float));
    }
  }
  
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69

3.2 estimateRigidTransformation() 函数详解(重载函数,含注释)

3.2.1 代码流程

TransformationEstimationSVD 类(含链接)有五个 estimateRigidTransformation() 函数,前四个 public 版本 estimateRigidTransformation() 都是第五个 protected 版本 estimateRigidTransformation() 的封装。

3.2.1.1 estimateRigidTransformation() 函数的封装

它们会将各自的输入都转为 ConstCloudIterator 后,再调用第五个 estimateRigidTransformation()

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{
  size_t nr_points = cloud_src.points.size ();
  // 两个点云的数量必须一致
  if (cloud_tgt.points.size () != nr_points)
  {
    PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", nr_points, cloud_tgt.points.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    Matrix4 &transformation_matrix) const
{
  // source 点云索引数量必须与 target 点云数量一致
  if (indices_src.size () != cloud_tgt.points.size ())
  {
    PCL_ERROR ("[pcl::TransformationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), cloud_tgt.points.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const std::vector<int> &indices_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const std::vector<int> &indices_tgt,
    Matrix4 &transformation_matrix) const
{
  // 两个点云的索引数量必须一致
  if (indices_src.size () != indices_tgt.size ())
  {
    PCL_ERROR ("[pcl::TransformationEstimationSVD::estimateRigidTransformation] Number or points in source (%lu) differs than target (%lu)!\n", indices_src.size (), indices_tgt.size ());
    return;
  }

  ConstCloudIterator<PointSource> source_it (cloud_src, indices_src);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, indices_tgt);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    const pcl::PointCloud<PointSource> &cloud_src,
    const pcl::PointCloud<PointTarget> &cloud_tgt,
    const pcl::Correspondences &correspondences,
    Matrix4 &transformation_matrix) const
{
  // ConstCloudIterator 构建会依据最后一个参数 (bool) 来决定要使用 Correspondence 的 index_query 或 index_match
  ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
  ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
  estimateRigidTransformation (source_it, target_it, transformation_matrix);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
3.2.1.2 第五个 estimateRigidTransformation() 重载函数

进入 estimateRigidTransformation(),根据 use_umeyama_ 是否为 true,此处会分为两个分支。在 use_umeyama_ 为 true 的情況下,会遍历输入的点云迭代器 source_it 和 target_it 建立 Eigen::Matrix 矩阵,然后调用 pcl::umeyama 计算它们之间的转换矩阵。

///
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::estimateRigidTransformation (
    ConstCloudIterator<PointSource>& source_it,
    ConstCloudIterator<PointTarget>& target_it,
    Matrix4 &transformation_matrix) const
{
  // Convert to Eigen format
  const int npts = static_cast <int> (source_it.size ());



  if (use_umeyama_)
  {
    Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_src (3, npts);
    Eigen::Matrix<Scalar, 3, Eigen::Dynamic> cloud_tgt (3, npts);

    for (int i = 0; i < npts; ++i)
    {
      cloud_src (0, i) = source_it->x;
      cloud_src (1, i) = source_it->y;
      cloud_src (2, i) = source_it->z;
      ++source_it;

      cloud_tgt (0, i) = target_it->x;
      cloud_tgt (1, i) = target_it->y;
      cloud_tgt (2, i) = target_it->z;
      ++target_it;
    }
    
    // 第三个参数是 with_scaling, 表示可以同时估计尺度缩放程度
    // Call Umeyama directly from Eigen (PCL patched version until Eigen is released)
    transformation_matrix = pcl::umeyama (cloud_src, cloud_tgt, false);
  }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

在 use_umeyama_ 为 false 的情況下,首先计算 source 点云和 target 点云的重心,接着对两点云做 demean,然后将 demean 后的点云和它们原来的重心一同传入 getTransformationFromCorrelation(),计算得到 transformation_matrix。

  else
  {
    source_it.reset (); target_it.reset ();
    // <cloud_src,cloud_src> is the source dataset
    transformation_matrix.setIdentity ();

    Eigen::Matrix<Scalar, 4, 1> centroid_src, centroid_tgt;
    // Estimate the centroids of source, target
    compute3DCentroid (source_it, centroid_src);
    compute3DCentroid (target_it, centroid_tgt);
    source_it.reset (); target_it.reset ();

    // Subtract the centroids from source, target
    Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> cloud_src_demean, cloud_tgt_demean;
    demeanPointCloud (source_it, centroid_src, cloud_src_demean);
    demeanPointCloud (target_it, centroid_tgt, cloud_tgt_demean);

    getTransformationFromCorrelation (cloud_src_demean, centroid_src, cloud_tgt_demean, centroid_tgt, transformation_matrix);
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
3.2.1.3 getTransformationFromCorrelation() 函数(核心,含详细推导)

getTransformationFromCorrelation() 函数是 ICP 算法的核心所在,这部分的代码与 ICP(Iterative Closest Point)公式推导(含链接)对照参看。这个函数接受 demean(移除平均值)后的点云 cloud_src_demean 及 cloud_tgt_demean 和它们原来的重心作为参数,它会套用公式计算旋转矩阵和平移向量,并填入输出的转换矩阵 transformation_matrix 中。其中
template<typename _MatrixType, int QRPreconditioner>
class Eigen::JacobiSVD< _MatrixType, QRPreconditioner >(含链接)
,QRPreconditioner 为可选参数。

///
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::TransformationEstimationSVD<PointSource, PointTarget, Scalar>::getTransformationFromCorrelation (
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_src_demean,
    const Eigen::Matrix<Scalar, 4, 1> &centroid_src,
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic> &cloud_tgt_demean,
    const Eigen::Matrix<Scalar, 4, 1> &centroid_tgt,
    Matrix4 &transformation_matrix) const
{
  transformation_matrix.setIdentity ();

  // Assemble the correlation matrix H = source * target'
  Eigen::Matrix<Scalar, 3, 3> H = (cloud_src_demean * cloud_tgt_demean.transpose ()).topLeftCorner (3, 3);

  // Compute the Singular Value Decomposition
  Eigen::JacobiSVD<Eigen::Matrix<Scalar, 3, 3> > svd (H, Eigen::ComputeFullU | Eigen::ComputeFullV);
  Eigen::Matrix<Scalar, 3, 3> u = svd.matrixU ();
  Eigen::Matrix<Scalar, 3, 3> v = svd.matrixV ();

  // R 最优证明,提取关键点——正交阵可能为旋转阵或者反射阵,区分行列式 1 或 -1,见下述
  // R 为正交标准阵,故旋转阵行列式应为 1,三维同适用(正交阵相乘保持正交),故判断 det(R),证明前提可用,以保证计算结果正确
  // 理论支撑 1,两个矩阵乘积的行列式与矩阵行列式的乘积相等
  // 理论支撑 2,矩阵的行列式矩阵转置的行列式相等
  // Compute R = V * U'
  if (u.determinant () * v.determinant () < 0)
  {
    // H = UΣV' 中奇异值最小为 0,即共面,故改变 v 第三维而不改变 H = UΣV' 结果,但由反射转换到 R 旋转的假设
    for (int x = 0; x < 3; ++x)
      v (x, 2) *= -1;
    // 理论上还有一种情况,无奇异值为 0,即非共面,SVD 方法失效,需要用其他如 RANSAC-like 方法对抗离群数据过多
  }
  
  // R 最优证明,即多项式(内积非负)负值项最大化。内积转换为迹,用到 Schwarz 不等式,SVD 分解,定义最优 R,得证,无需再旋转
  Eigen::Matrix<Scalar, 3, 3> R = v * u.transpose ();

  // T 计算,旋转后源中心点 - 目标中心点,取其负值,即源点云转换到目标点云
  // Return the correct transformation
  transformation_matrix.topLeftCorner (3, 3) = R;
  const Eigen::Matrix<Scalar, 3, 1> Rc (R * centroid_src.head (3));
  transformation_matrix.block (0, 3, 3, 1) = centroid_tgt.head (3) - Rc;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

四、小结

对文章内容有不解,请随时留言。


声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/122653
推荐阅读
相关标签
  

闽ICP备14008679号