当前位置:   article > 正文

亚马逊云AI应用科技创新下的Amazon SageMaker使用教程_create estimate: configure amazon sagemaker 如何选择

create estimate: configure amazon sagemaker 如何选择

目录

Amazon SageMaker简介

Amazon SageMaker在控制台的使用

模型的各项参数

pytorch训练绘图部分代码


Amazon SageMaker简介

亚马逊SageMaker是一种完全托管的机器学习服务。借助 SageMaker,数据科学家和开发人员可以快速、轻松地构建和训练机器学习模型,然后直接将模型部署到生产就绪托管环境中。它提供了一个集成的 Jupyter 编写 Notebook 实例,供您轻松访问数据源以便进行探索和分析,因此您无需管理服务器。此外,它还可以提供常见的机器学习算法,这些算法经过了优化,可以在分布式环境中高效处理非常大的数据。借助对bring-your-own-algorithms和框架的本地支持,SageMaker提供灵活的分布式训练选项,可根据您的特定工作流程进行调整。可以从 SageMaker Studio 或 SageMaker 控制台中单击几下鼠标按钮以启动模型,以将该模型部署到安全且可扩展的环境中。

Amazon SageMaker在控制台的使用

  • 创建Amazon SageMaker

在亚马逊云科技首页,我们登录账号之后在搜索栏输入Amazon SageMaker之后,我们点击第一个服务进入Amazon SageMaker服务选在控制面板。

  • 进入服务的控制面板之后我们选择我们的服务设备

我们这里选择笔记本实例,当然要是有其他需求的小伙伴可以自行选择其他,因为我们这里时笔记本所以我就选择的时笔记本实例。然后点击创建笔记本实例即可进行下一步。

  • 进入笔记本实例设置里面需要填入一下信息:

    1. 笔记本实例名称

    2. 笔记本实例类型

    3. Elastic Inference

    4. 平台标识符

    5. 生命周期配置

    6. 卷大小

    7. 最低IMDS版本等

  • 设置好之后进入创建IAM角色控制面板,完成创建角色。

  • 创建完成之后返回笔记本实例控制面板,完成笔记本实例的创建。

  • 下载好代码(ipynb)文件之后,我们在笔记本实例页面点击“打开Jupyter”,然后上传代码。选择好文件后,点击蓝色的“Upload”按键,即可完成上传。然后我们打开刚刚上传的notebook,可以看到该文件就是一个完整的Stable Diffusion训练代码,这里我们的run kernel选择conda_pytorch_38或conda_pytorch_39,因为机器学习代码是用pytorch写的。

模型的各项参数

  • prompt (str or List[str]): 引导图像生成的文本提示或文本列表

  • height (int, optional, 默认为 V1模型可支持到512像素,V2模型可支持到768像素): 生成图像的高度(以像素为单位)

  • width (int, optional, 默认为 V1模型可支持到512像素,V2模型可支持到768像素): 生成图像的宽度(以像素为单位)

  • num_inference_steps (int, optional, defaults to 50): 降噪步数。更多的去噪步骤通常会以较慢的推理为代价获得更高质量的图像

  • guidance_scale (float, optional, defaults to 7.5): 较高的指导比例会导致图像与提示密切相关,但会牺牲图像质量。 如果指定,它必须是一个浮点数。 guidance_scale<=1 被忽略。

  • negative_prompt (str or List[str], optional): 不引导图像生成的文本或文本列表。不使用时忽略,必须与prompt类型一致(不应小于等于1.0)

  • num_images_per_prompt (int, optional, defaults to 1): 每个提示生成的图像数量

pytorch训练绘图部分代码

  1. # move Model to the GPU
  2. torch.cuda.empty_cache()
  3. pipe = pipe.to("cuda")
  4. # V1 Max-H:512,Max-W:512
  5. # V2 Max-H:768,Max-W:768
  6. print(datetime.datetime.now())
  7. # 提示词,一句话或者多句话
  8. prompts =[
  9. "Dream far away",
  10. "A singer who is singing",
  11. ]
  12. generated_images = pipe(
  13. prompt=prompts,
  14. height=512, # 生成图像的高度
  15. width=512, # 生成图像的宽度
  16. num_images_per_prompt=1 # 每个提示词生成多少个图像
  17. ).images # image here is in [PIL format](https://pillow.readthedocs.io/en/stable/)
  18. print(f"Prompts: {prompts}\n")
  19. print(datetime.datetime.now())
  20. for image in generated_images:
  21. display(image)

在这里,我们设置了两个提示词:

  • Dream far away:梦想远方

  • A singer who is singing:一个正在唱歌的歌手

生成结构如下:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/135995
推荐阅读
相关标签
  

闽ICP备14008679号