当前位置:   article > 正文

Machine Learning - Coursera 吴恩达机器学习教程 Week1 学习笔记_machine learning coursera

machine learning coursera

机器学习的定义

Arthur Samuel 传统定义

Arthur Samuel: “the field of study that gives computers the ability to learn without being explicitly programmed.” This is an older, informal definition.

让计算机无需明确编程,就有学习能力。

Tom Mitchell 现代定义

Tom Mitchell: “A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.”

若一个程序能从某任务T的经验E中学习后,提高任务T的性能P,就可以成之为机器学习。

比如下棋的例子:

E:下许多盘棋的经验
T:下棋
P:下一盘棋的胜率

通常,机器学习算法可分为两大类:有监督学习和无监督学习。

有监督学习(Supervised Learning)

有监督学习:提供了正确答案。

主要分为回归和分类。

回归(Regression)

需预测的目标变量连续时,比如房价和面积的关系,为线性回归问题;
在这里插入图片描述

分类(Classification)

只有离散的几种取值时,比如肿瘤是否是良性,则为分类问题。
在这里插入图片描述
需要分类的属性太多,就需要用到支持向量机:
在这里插入图片描述

无监督学习(Unsupervised Learning)

无监督学习:不提供参考答案。只能从数据本身的关联中提取模式。

聚类: 给你1,000,000个不同的基因,通过不同的变量如寿命、位置、角色等,将它们自动分类。

非聚类:鸡尾酒聚会算法,能在嘈杂环境中识别出背景音乐和不同个体的声音。
![在这里插入图片描述](https://img-blog.csdnimg.cn/20在这里插入图片描述
鸡尾酒聚会问题,一行代码解决:
在这里插入图片描述

模型

在这里插入图片描述
x(i) : 输入变量
y(i) : 目标变量
h(x) :hypothesis,假设的目标函数

代价函数

J(θ) 代表目标函数和原始函数见的差距,即代价函数

使得J(θ)最小的那个h(x)就是预期的目标函数。

最常用的J(θ)表示如下,也叫做均方差函数:
在这里插入图片描述
在这里插入图片描述

当J(θ0)只有一个变量时,J随θ的变化是二维图像:
在这里插入图片描述

当J(θ0, θ1)有两个变量时,函数图是三维的:
在这里插入图片描述
可以用等高线来表示取得相同J值的θ0和θ1

右图从等高线外围到中心,J的值越来越小,可以看到对应左侧的h(x)越来越靠谱:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

梯度下降(gradient descent)

寻找最佳目标函数h(x)的过程,也即最小化代价函数J(θ)的过程。

目标就是找到让J(θ)最小的θ值。

寻找最小θ值,一般用梯度下降法。

这里需要认识一些术语:

derivative term 导数项
Partial Derivative 偏导数
multivariate 多元
convergent 收敛
calculus 微积分
tangent 切线;正切
convex function 凸函数(碗状的)
Quadratic function:二次函数

梯度下降法公式:重复以下式子,直到收敛。
在这里插入图片描述

求解过程如下图,每个星星是一步。

α:学习率,α越大,步子越大;

J的偏导数,从几何意义上讲,就是函数变化增加最快的地方。朝着下降最多的方向进行;

不同的起点,会带来不同的下降方向,如下图:
在这里插入图片描述
θ0, θ1的起始值其实无关紧要,一般均初始化为0。

梯度下降,一定要同步更新多个变量,否则就会出错:
在这里插入图片描述

朝着梯度下降的方向逐渐收敛,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/147378
推荐阅读
相关标签
  

闽ICP备14008679号