赞
踩
SSIM的全称为structural similarity index,即为结构相似性,是一种衡量两幅图像相似度的指标。该指标首先由德州大学奥斯丁分校的图像和视频工程实验室(Laboratory for Image and Video Engineering)提出。而如果两幅图像是压缩前和压缩后的图像,那么SSIM算法就可以用来评估压缩后的图像质量。
在实际应用中,一般采用高斯函数计算图像的均值、方差以及协方差,而不是采用遍历像素点的方式,以换来更高的效率。
具体步骤:
更正下协方差计算
python 代码:
- def keras_SSIM_cs(y_true, y_pred):
- axis=None
- gaussian = make_kernel(1.5)
- x = tf.nn.conv2d(y_true, gaussian, strides=[1, 1, 1, 1], padding='SAME')
- y = tf.nn.conv2d(y_pred, gaussian, strides=[1, 1, 1, 1], padding='SAME')
-
- u_x=K.mean(x, axis=axis)
- u_y=K.mean(y, axis=axis)
-
- var_x=K.var(x, axis=axis)
- var_y=K.var(y, axis=axis)
-
- cov_xy=cov_keras(x, y, axis)
-
- K1=0.01
- K2=0.03
- L=1 # depth of image (255 in case the image has a differnt scale)
-
- C1=(K1*L)**2
- C2=(K2*L)**2
- C3=C2/2
-
- l = ((2*u_x*u_y)+C1) / (K.pow(u_x,2) + K.pow(u_x,2) + C1)
- c = ((2*K.sqrt(var_x)*K.sqrt(var_y))+C2) / (var_x + var_y + C2)
- s = (cov_xy+C3) / (K.sqrt(var_x)*K.sqrt(var_y) + C3)
-
- return [c,s,l]
-
- def keras_MS_SSIM(y_true, y_pred):
- iterations = 5
- x=y_true
- y=y_pred
- weight = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
- c=[]
- s=[]
- for i in range(iterations):
- cs=keras_SSIM_cs(x, y)
- c.append(cs[0])
- s.append(cs[1])
- l=cs[2]
- if(i!=4):
- x=tf.image.resize_images(x, (x.get_shape().as_list()[1]//(2**(i+1)), x.get_shape().as_list()[2]//(2**(i+1))))
- y=tf.image.resize_images(y, (y.get_shape().as_list()[1]//(2**(i+1)), y.get_shape().as_list()[2]//(2**(i+1))))
- c = tf.stack(c)
- s = tf.stack(s)
- cs = c*s
-
- #Normalize: suggestion from https://github.com/jorge-pessoa/pytorch-msssim/issues/2 last comment to avoid NaN values
- l=(l+1)/2
- cs=(cs+1)/2
-
- cs=cs**weight
- cs = tf.reduce_prod(cs)
- l=l**weight[-1]
-
- ms_ssim = l*cs
- ms_ssim = tf.where(tf.is_nan(ms_ssim), K.zeros_like(ms_ssim), ms_ssim)
-
- return K.mean(ms_ssim)
MATLAB代码:
- function [mssim, ssim_map] = ssim(img1, img2, K, window, L)
-
- % ========================================================================
- % Edited code by Adam Turcotte and Nicolas Robidoux
- % Laurentian University
- % Sudbury, ON, Canada
- % Last Modified: 2011-01-22
- % ----------------------------------------------------------------------
- % This code implements a refactored computation of SSIM that requires
- % one fewer blur (4 instead of 5), the same number of pixel-by-pixel
- % binary operations (10), and two fewer unary operations (6 instead of 8).
- %
- % In addition, this version reduces memory usage with in-place functions.
- % As a result, it supports larger input images.
- %========================================================================
-
- % ========================================================================
- % SSIM Index with automatic downsampling, Version 1.0
- % Copyright(c) 2009 Zhou Wang
- % All Rights Reserved.
- %
- % ----------------------------------------------------------------------
- % Permission to use, copy, or modify this software and its documentation
- % for educational and research purposes only and without fee is hereby
- % granted, provided that this copyright notice and the original authors'
- % names appear on all copies and supporting documentation. This program
- % shall not be used, rewritten, or adapted as the basis of a commercial
- % software or hardware product without first obtaining permission of the
- % authors. The authors make no representations about the suitability of
- % this software for any purpose. It is provided "as is" without express
- % or implied warranty.
- %----------------------------------------------------------------------
- %
- % This is an implementation of the algorithm for calculating the
- % Structural SIMilarity (SSIM) index between two images
- %
- % Please refer to the following paper and the website with suggested usage
- %
- % Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
- % quality assessment: From error visibility to structural similarity,"
- % IEEE Transactios on Image Processing, vol. 13, no. 4, pp. 600-612,
- % Apr. 2004.
- %
- % http://www.ece.uwaterloo.ca/~z70wang/research/ssim/
- %
- % Note: This program is different from ssim_index.m, where no automatic
- % downsampling is performed. (downsampling was done in the above paper
- % and was described as suggested usage in the above website.)
- %
- % Kindly report any suggestions or corrections to zhouwang@ieee.org
- %
- %----------------------------------------------------------------------
- %
- %Input : (1) img1: the first image being compared
- % (2) img2: the second image being compared
- % (3) K: constants in the SSIM index formula (see the above
- % reference). defualt value: K = [0.01 0.03]
- % (4) window: local window for statistics (see the above
- % reference). default widnow is Gaussian given by
- % window = fspecial('gaussian', 11, 1.5);
- % (5) L: dynamic range of the images. default: L = 255
- %
- %Output: (1) mssim: the mean SSIM index value between 2 images.
- % If one of the images being compared is regarded as
- % perfect quality, then mssim can be considered as the
- % quality measure of the other image.
- % If img1 = img2, then mssim = 1.
- % (2) ssim_map: the SSIM index map of the test image. The map
- % has a smaller size than the input images. The actual size
- % depends on the window size and the downsampling factor.
- %
- %Basic Usage:
- % Given 2 test images img1 and img2, whose dynamic range is 0-255
- %
- % [mssim, ssim_map] = ssim(img1, img2);
- %
- %Advanced Usage:
- % User defined parameters. For example
- %
- % K = [0.05 0.05];
- % window = ones(8);
- % L = 100;
- % [mssim, ssim_map] = ssim(img1, img2, K, window, L);
- %
- %Visualize the results:
- %
- % mssim %Gives the mssim value
- % imshow(max(0, ssim_map).^4) %Shows the SSIM index map
- %========================================================================
-
-
- if (nargin < 2 || nargin > 5)
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
-
- if (size(img1) ~= size(img2))
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
-
- [M N] = size(img1);
-
- if (nargin == 2)
- if ((M < 11) || (N < 11))
- mssim = -Inf;
- ssim_map = -Inf;
- return
- end
- window = fspecial('gaussian', 11, 1.5); %
- K(1) = 0.01; % default settings
- K(2) = 0.03; %
- L = 255; %
- end
-
- if (nargin == 3)
- if ((M < 11) || (N < 11))
- mssim = -Inf;
- ssim_map = -Inf;
- return
- end
- window = fspecial('gaussian', 11, 1.5);
- L = 255;
- if (length(K) == 2)
- if (K(1) < 0 || K(2) < 0)
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
- else
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
- end
- if (nargin == 4)
- [H W] = size(window);
- if ((H*W) < 4 || (H > M) || (W > N))
- mssim = -Inf;
- ssim_map = -Inf;
- return
- end
- L = 255;
- if (length(K) == 2)
- if (K(1) < 0 || K(2) < 0)
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
- else
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
- end
- if (nargin == 5)
- [H W] = size(window);
- if ((H*W) < 4 || (H > M) || (W > N))
- mssim = -Inf;
- ssim_map = -Inf;
- return
- end
- if (length(K) == 2)
- if (K(1) < 0 || K(2) < 0)
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
- else
- mssim = -Inf;
- ssim_map = -Inf;
- return;
- end
- end
-
-
- img1 = double(img1);
- img2 = double(img2);
-
- % automatic downsampling
- f = max(1,round(min(M,N)/256));
- %downsampling by f
- %use a simple low-pass filter
- if(f>1)
- lpf = ones(f,f);
- lpf = (1./(f*f))*lpf;
- img1 = imfilter(img1,lpf,'symmetric','same');
- img2 = imfilter(img2,lpf,'symmetric','same');
-
- img1 = img1(1:f:end,1:f:end);
- img2 = img2(1:f:end,1:f:end);
- end
-
- C1 = (K(1)*L)^2;
- C2 = (K(2)*L)^2;
- window = window/sum(sum(window));
- ssim_map = filter2(window, img1, 'valid'); % gx
- w1 = filter2(window, img2, 'valid'); % gy
- w2 = ssim_map.*w1; % gx*gy
- w2 = 2*w2+C1; % 2*(gx*gy)+C1 = num1
- w1 = (w1-ssim_map).^2+w2; % (gy-gx)^2+num1 = den1
- ssim_map = filter2(window, img1.*img2, 'valid'); % g(x*y)
- ssim_map = (2*ssim_map+(C1+C2))-w2; % 2*g(x*y)+(C1+C2)-num1 = num2
- ssim_map = ssim_map.*w2; % num
- img1 = img1.^2; % x^2
- img2 = img2.^2; % y^2
- img1 = img1+img2; % x^2+y^2
-
- if (C1 > 0 && C2 > 0)
- w2 = filter2(window, img1, 'valid'); % g(x^2+y^2)
- w2 = w2-w1+(C1+C2); % den2
- w2 = w2.*w1; % den
- ssim_map = ssim_map./w2; % num/den = ssim
- else
- w3 = filter2(window, img1, 'valid'); % g(x^2+y^2)
- w3 = w3-w1+(C1+C2); % den2
- w4 = ones(size(w1));
- index = (w1.*w3 > 0);
- w4(index) = (ssim_map(index))./(w1(index).*w3(index));
- index = (w1 ~= 0) & (w3 == 0);
- w4(index) = w2(index)./w1(index);
- ssim_map = w4;
- end
-
- mssim = mean2(ssim_map);
-
- return
C++代码
- #include <opencv2/imgproc/imgproc.hpp>
- #include <opencv2/core/core.hpp>
- #include <opencv2/highgui/highgui.hpp>
- #include <iostream>
-
- using namespace std;
- using namespace cv;
-
- Scalar getMSSIM(Mat inputimage1, Mat inputimage2);
- int main()
- {
- Mat BlurImage1;
- Mat BlurImage2;
- Mat SrcImage = imread("1.jpg");
- blur(SrcImage, BlurImage1, Size(5, 5));
- blur(SrcImage,BlurImage2,Size(10,10));
- Scalar SSIM1 = getMSSIM(SrcImage, BlurImage1);
- Scalar SSIM2 = getMSSIM(SrcImage, BlurImage2);
- printf("模糊5*5通道1:%f\n", SSIM1.val[0] * 100);
- printf("模糊5*5通道2:%f\n", SSIM1.val[1] * 100);
- printf("模糊5*5通道3:%f\n", SSIM1.val[2] * 100);
- printf("模糊5*5:%f\n", (SSIM1.val[2] + SSIM1.val[1] + SSIM1.val[0])/3 * 100);
- printf("模糊10*10通道1:%f\n", SSIM2.val[0] * 100);
- printf("模糊10*10通道2:%f\n", SSIM2.val[1] * 100);
- printf("模糊10*10通道3:%f\n", SSIM2.val[2] * 100);
- printf("模糊10*10:%f\n", (SSIM2.val[2] + SSIM2.val[1] + SSIM2.val[0]) / 3 * 100);
- imshow("原图",SrcImage);
- imshow("模糊5*5",BlurImage1);
- imshow("模糊10*10", BlurImage2);
- waitKey(0);
- return 0;
- }
- Scalar getMSSIM(Mat inputimage1, Mat inputimage2)
- {
- Mat i1 = inputimage1;
- Mat i2 = inputimage2;
- const double C1 = 6.5025, C2 = 58.5225;
- int d = CV_32F;
- Mat I1, I2;
- i1.convertTo(I1, d);
- i2.convertTo(I2, d);
- Mat I2_2 = I2.mul(I2);
- Mat I1_2 = I1.mul(I1);
- Mat I1_I2 = I1.mul(I2);
- Mat mu1, mu2;
- GaussianBlur(I1, mu1, Size(11, 11), 1.5);
- GaussianBlur(I2, mu2, Size(11, 11), 1.5);
- Mat mu1_2 = mu1.mul(mu1);
- Mat mu2_2 = mu2.mul(mu2);
- Mat mu1_mu2 = mu1.mul(mu2);
- Mat sigma1_2, sigma2_2, sigma12;
- GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
- sigma1_2 -= mu1_2;
- GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
- sigma2_2 -= mu2_2;
- GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
- sigma12 -= mu1_mu2;
- Mat t1, t2, t3;
- t1 = 2 * mu1_mu2 + C1;
- t2 = 2 * sigma12 + C2;
- t3 = t1.mul(t2);
- t1 = mu1_2 + mu2_2 + C1;
- t2 = sigma1_2 + sigma2_2 + C2;
- t1 = t1.mul(t2);
- Mat ssim_map;
- divide(t3, t1, ssim_map);
- Scalar mssim = mean(ssim_map);
- return mssim;
- }
这里附一个Python的工具箱,有各种评价函数:
The following metrics are included:
Mean-Squared-Error (MSE).
Peak-Signal-to-Noise-Ratio (PSNR).
Structural Similarity Index (SSIM).
Normalized Mutual Information (NMI).
Image Complexity.
Resolution analysis through Edge-Profile-Fitting (EPF).
Resolution analysis through Fourier Ring Correlation (FRC).
The following routines to construct simulated datasets are included:
Create a Shepp-Logan phantom.
Create generic phantoms with analytical X-ray transform.
Rescale image.
Downsample sinogram.
Add Gaussian or Poisson noise.
Add Gaussian blurring.
https://github.com/arcaduf/image_quality_assessment
【1】https://ieeexplore.ieee.org/abstract/document/1292216
【2】Image quality assessment: From error visibility to structural similarity,
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。