赞
踩
接上一次的博文,这两天我又进行了自己更复杂一点的数据集的制作和训练,算是对上一篇博文的补充,这次讲一讲对于多目标的目标检测的一些重要步骤。
import xml.etree.ElementTree as ET import pickle import os from os import listdir, getcwd from os.path import join sets = ['train', 'test','val'] classes = ["car","ad", "bus", "chair", "didi", "group", "hello", "mobike", "motorbike","other", "outdoor", "rider", "shed", "stall", "table", "tricycle", "truck"] def convert(size, box): dw = 1. / size[0] dh = 1. / size[1] x = (box[0] + box[1]) / 2.0 y = (box[2] + box[3]) / 2.0 w = box[1] - box[0] h = box[3] - box[2] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) def convert_annotation(image_id): in_file = open('data/Annotations/%s.xml' % (image_id)) out_file = open('data/labels/%s.txt' % (image_id), 'w') tree = ET.parse(in_file) root = tree.getroot() size = root.find('size') w = int(size.find('width').text) h = int(size.find('height').text) for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult) == 1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) bb = convert((w, h), b) out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() print(wd) for image_set in sets: if not os.path.exists('data/labels/'): os.makedirs('data/labels/') image_ids = open('data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split() list_file = open('data/%s.txt' % (image_set), 'w') for image_id in image_ids: list_file.write('data/images/%s.jpg\n' % (image_id)) convert_annotation(image_id) list_file.close()
在liunx下运行py文件的方法:python voc_label.py
多目标检测的关键点就在于脚本文件的classes处,需要检测多少个目标对象就要设置多少个分类,这里我们进行17个目标对象的目标检测。
2. 开始训练
2.1训练参数修改
在开始训练之前需要修改train的参数,尤其是cfg文件,如果不做修改,则会报错误,一般情况下yolo默认的是spp的cfg文件,所以会报不匹配的错误,这里我们需要将weights更改为与之对应的,因为本人的显卡内存不足,而且spp是一个三层yolo的模型,我无法使用,所以我一直使用的是tiny模型。tiny虽然轻量便捷快速,但是精度还是不够高的。
tip1:有一个要注意的点,如果是使用服务器跑深度学习,那么很可能出现cuda out of memory的错误,那么就要注意gpu的内存使用情况,可以使用:
nvidia-smi
查看显卡内存使用情况,如果有一些没有退出存储的进程,我们可以使用:
kill -9 pid
杀死这些进程,释放空间
2.2训练文件准备
yolo.names:
这里就是和单class训练区别很大的地方,这个文件一定要注意格式,这里我把我的names文件贴在这里供大家参考:
ad bus car chair didi group hello mobike motorbike other outdoor rider shed stall table tricycle truck
yolo.data:
classes=17
train=data/train.txt
valid=data/val.txt
names=data/yolo.names
backup=backup/
我们需要对应names文件,修改data文件中的classes和names属性。
yolo-tiny.cfg:
这里我们最为重要的就是对于yolo层的classes还有yolo上层的卷积层的filters值的修改:
filters=66 #3(class + 4 + 1)
我在这里训练了17个类,那就是class=17,在做运算得到filters=66
[net] batch=1 subdivisions=1 width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 500200 policy=steps steps=400000,450000 scales=.1,.1 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=1 [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=66 activation=linear [yolo] mask = 3,4,5 anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 classes=17 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 8 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=66 activation=linear [yolo] mask = 0,1,2 anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 classes=17 num=6 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=1
如果我们使用yolov3-spp.cfg文件进行训练,那么spp这里有三层yolo,那就要修改三层的卷积层[convolutional],对应公式也不同:
(classes + 5)* anchors_of_this_yolo
anchors_of_this_yolo代表该层yolo的anchor数目,anchors两个逗号为一个anchor。
在我们调整完成后,就可以开始训练了,训练完成的模型best.pt就会放在yolov3的weights文件夹下,以方便我们detect时使用。
tip2:这里还要提及一下,voc_label.py中的classes要和names中的classes对应顺序,要不会出现标记错误的问题。
3.训练结果
将待检测的图片放入data\sample文件夹下,基于训练获得的weights文件夹下的best.pt模型文件,运行detect.py即可完成检测。
python detect.py --names data/yolo.names --source data/samples/ --cfg cfg/yolov3-tiny.cfg --weights weights/best.pt
4.总结
这就是本次多目标的检测成果,精度还是可以的,epochs了150次,精度是有提升的,大家可以在训练时注意Giou,cls和obj参数,基本都是越低越精确的。
最后的最后要感谢对我提供了帮助的师姐@ToLiveXX
和让我获益匪浅的文章如何使用Pytorch实现YOLOv3训练自己的数据集(详尽版)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。