赞
踩
slam算法是机器人在未知或者动态环境下,移动机器人通过自身携带的传感器来感知自身所处的位置,从起始点处开始,根据传感器所感知的机器人位置逐步构建增量式的地图,再运用所构建的地图对机器人定位,这个过程类似于蛋和鸡的形式。
在未知环境中,如何创建地图,同时利用地图来自主定位与导航。基于扩展卡尔曼滤波的方法是slam算法中常用的方法,但该算法计算复杂度高,精度较低,而基于粒子滤波的SLAM算法计算量大,难以满足导航系统实时性的需求。
建模
在定位和建图中,需要建立三个坐标系,分别为全局坐标系OXY,移动机器人本体局部坐标系,传感器局部坐标系,全局坐标系的原点在机器人初始位置,本体局部坐标系的坐标原点位于机器人本体的几何中心。
机器人数学模型示意图
其中(x(t),y(t))为移动机器人在全局地图中的位置,θ(t )为移动机器人位置与x轴正向的夹角。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。