赞
踩
打开abelme安装目录:
1.labelme直接安装在anaconda主环境下,C:\ProgramData\Anaconda3\Lib\site-packages\labelme\cli目录(根据自己电脑anaconda安装目录而定),可以看到json_to_dataset.py文件。
2.labelme安装在自己新建的虚拟环境下边,需要找到ananonda安装目录下的envs文件夹中的虚拟环境文件,C:\ProgramData\Anaconda3\envs\lb\Lib\site-packages\labelme\cli。
将下边的代码替换json_to_dataset.py文件并保存
import argparse import json import os import os.path as osp import warnings import PIL.Image import yaml from labelme import utils import base64 def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) count = os.listdir(json_file) for i in range(0, len(count)): path = os.path.join(json_file, count[i]) if os.path.isfile(path): data = json.load(open(path)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(count[i]).replace('.', '_') out_dir = osp.join(osp.dirname(count[i]), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) #PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir) if __name__ == '__main__': main()
方法同第一步,我这里只展示我的虚拟环境下的目录:C:\ProgramData\Anaconda3\envs\lb\Scripts
打开anaconda prompt,激活虚拟环境
使用cd命令切换路径:cd C:\ProgramData\Anaconda3\envs\lb\Scripts
执行:labelme_json_to_dataset.exe +json文件的路径
在scripts自动生成转换文件:
如果出现错误AttributeError:模块’labelme.utils’没有’draw_label’属性,AttributeErrormodulelabelmeutilshasnoattributedrawlabel
需要更换labelme版本,需要降低labelme 版本到3.16.2 ,方法进入labelme环境中,键入 pip install labelme==3.16.2就可以自动下载这个版本了,就可以成功了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。