赞
踩
借鉴:https://blog.csdn.net/weixin_40699243/article/details/109202976
TF-IDF的主要思想是:如果某个词或短语在一篇文章中出现的频率TF高,并且在其他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适合用来分类。TF-IDF实际上是:TF×IDF,TF为词频,IDF反文档频率。
(倾向于过滤掉常见的词语,保留重要的词语)
词频(TF) = 某个词在文章中的出现次数 / 文章总词数
逆文档频率(IDF) = log(词料库的文档总数/包含该词的文档数+1)
TF-IDF = 词频(TF) ×逆文档频率(IDF)
import numpy as np from collections import Counter import itertools #一系列用来产生不同类型迭代器的函数或类,这些函数的返回都是一个迭代器,我们可以通过 for 循环来遍历取值,也可以使用 next() 来取值 from visual import show_tfidf docs = [ "it is a good day, I like to stay here", "I am happy to be here", "I am bob", "it is sunny today", "I have a party today", "it is a dog and that is a cat", "there are dog and cat on the tree", "I study hard this morning", "today is a good day", "tomorrow will be a good day", "I like coffee, I like book and I like apple", "I do not like it", "I am kitty, I like bob", "I do not care who like bob, but I like kitty", "It is coffee time, bring your cup", ] docs_words = [d.replace(",", "").split(" ") for d in docs] #得到一个列表 vocab = set(itertools.chain(*docs_words)) #得到一个集合,用chain创建一个迭代器,依次连续的返回每个可迭代对象的元素 v2i = {v: i for i, v in enumerate(vocab)} #将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标 i2v = {i: v for v, i in v2i.items()} #字典形式,键和值;items代表键和值都遍历 def safe_log(x): mask = x != 0 x[mask] = np.log(x[mask]) return x tf_methods = { "log": lambda x: np.log(1+x), "augmented": lambda x: 0.5 + 0.5 * x / np.max(x, axis=1, keepdims=True), "boolean": lambda x: np.minimum(x, 1), "log_avg": lambda x: (1 + safe_log(x)) / (1 + safe_log(np.mean(x, axis=1, keepdims=True))), } idf_methods = { "log": lambda x: 1 + np.log(len(docs) / (x+1)), "prob": lambda x: np.maximum(0, np.log((len(docs) - x) / (x+1))), "len_norm": lambda x: x / (np.sum(np.square(x))+1), } def get_tf(method="log"): # term frequency: how frequent a word appears in a doc _tf = np.zeros((len(vocab), len(docs)), dtype=np.float64) # [n_vocab, n_doc] for i, d in enumerate(docs_words): counter = Counter(d) for v in counter.keys(): _tf[v2i[v], i] = counter[v] / counter.most_common(1)[0][1] #counter.most_common(1)找到出现频率最高的词 weighted_tf = tf_methods.get(method, None) if weighted_tf is None: raise ValueError return weighted_tf(_tf) def get_idf(method="log"): # inverse document frequency: low idf for a word appears in more docs, mean less important df = np.zeros((len(i2v), 1)) for i in range(len(i2v)): d_count = 0 for d in docs_words: d_count += 1 if i2v[i] in d else 0 df[i, 0] = d_count idf_fn = idf_methods.get(method, None) if idf_fn is None: raise ValueError return idf_fn(df) def cosine_similarity(q, _tf_idf): #余弦距离 unit_q = q / np.sqrt(np.sum(np.square(q), axis=0, keepdims=True)) unit_ds = _tf_idf / np.sqrt(np.sum(np.square(_tf_idf), axis=0, keepdims=True)) similarity = unit_ds.T.dot(unit_q).ravel() return similarity #误差得分??? def docs_score(q, len_norm=False): q_words = q.replace(",", "").split(" ") # add unknown words unknown_v = 0 for v in set(q_words): if v not in v2i: v2i[v] = len(v2i) i2v[len(v2i)-1] = v unknown_v += 1 if unknown_v > 0: _idf = np.concatenate((idf, np.zeros((unknown_v, 1), dtype=np.float)), axis=0) _tf_idf = np.concatenate((tf_idf, np.zeros((unknown_v, tf_idf.shape[1]), dtype=np.float)), axis=0) else: _idf, _tf_idf = idf, tf_idf counter = Counter(q_words) q_tf = np.zeros((len(_idf), 1), dtype=np.float) # [n_vocab, 1] for v in counter.keys(): q_tf[v2i[v], 0] = counter[v] q_vec = q_tf * _idf # [n_vocab, 1] q_scores = cosine_similarity(q_vec, _tf_idf) if len_norm: len_docs = [len(d) for d in docs_words] q_scores = q_scores / np.array(len_docs) return q_scores def get_keywords(n=2): for c in range(3): col = tf_idf[:, c] idx = np.argsort(col)[-n:] print("doc{}, top{} keywords {}".format(c, n, [i2v[i] for i in idx])) tf = get_tf() # [n_vocab, n_doc] idf = get_idf() # [n_vocab, 1] tf_idf = tf * idf # [n_vocab, n_doc] print("tf shape(vecb in each docs): ", tf.shape) print("\ntf samples:\n", tf[:2]) print("\nidf shape(vecb in all docs): ", idf.shape) print("\nidf samples:\n", idf[:2]) print("\ntf_idf shape: ", tf_idf.shape) print("\ntf_idf sample:\n", tf_idf[:2]) # test get_keywords() q = "I get a coffee cup" scores = docs_score(q) d_ids = scores.argsort()[-3:][::-1] print("\ntop 3 docs for '{}':\n{}".format(q, [docs[i] for i in d_ids])) show_tfidf(tf_idf.T, [i2v[i] for i in range(len(i2v))], "tfidf_matrix")
Word2vec 是 Word Embedding 方式之一,属于 NLP 领域。他是将词转化为「可计算」「结构化」的向量的过程。
运用神经网络将V维的词向量,通过权重矩阵Vd转换为 d维词向量。
输入为word bag中V个词中的一个词,已经转换为V维 one-hot编码, 通过权重矩阵W, 得到输出1d维的H, 再经过softmax d*V维转换成为V维的词向量。
输出含义:条件概率
还可以用训练好的H权重,将V维的one-hot词向量转化为d维的词向量。
在cbow方法中,是用周围词预测中心词,从而利用中心词的预测结果情况,使用GradientDesent方法,不断的去调整周围词的向量。
当训练完成之后,每个词都会作为中心词,把周围词的词向量进行了调整,这样也就获得了整个文本里面所有词的词向量。
要注意的是, cbow的对周围词的调整是统一的:求出的gradient的值会同样的作用到每个周围词的词向量当中去。
可以看到,cbow预测行为的次数跟整个文本的词数几乎是相等的
(每次预测行为才会进行一次backpropgation, 而往往这也是最耗时的部分),复杂度大概是O(V)
skip-gram是用中心词来预测周围的词,利用周围的词的预测结果情况使用GradientDecent来不断的调整中心词的词向量
最终所有的文本遍历完毕之后,也就得到了文本所有词的词向量。
可以看出,skip-gram进行预测的次数是要多于cbow的:因为每个词在作为中心词时,都要使用周围词进行预测一次。
这样相当于比cbow的方法多进行了K次(假设K为窗口大小),因此时间的复杂度为O(KV),训练时间要比cbow要长。
但是在skip-gram当中,每个词都要收到周围的词的影响,每个词在作为中心词的时候,都要进行K次的预测、调整。
因此, 当数据量较少,或者词为生僻词出现次数较少时, 这种多次的调整会使得词向量相对的更加准确。
因为尽管cbow从另外一个角度来说,某个词也是会受到多次周围词的影响(多次将其包含在内的窗口移动),进行词向量的跳帧
但是他的调整是跟周围的词一起调整的,grad的值会平均分到该词上, 相当于该生僻词没有收到专门的训练,它只是沾了周围词的光而已。
skip-gram:1个中心词受K个周围词的影响,中心词的“能力”(向量结果)相对就会扎实(准确)一些,但是这样肯定会使用更长的时间;
cbow:1个中心词影响K个周围词,但单轮训练不保证结果,还要看下一轮(假如还在窗口内),或者以后的某一轮再次出现作为周围词,然后进步一点,效率高,速度更快,但可能结果不那么准确
from tensorflow import keras import tensorflow as tf from utils import process_w2v_data from visual import show_w2v_word_embedding tf.enable_eager_execution() corpus = [ # numbers "5 2 4 8 6 2 3 6 4", "4 8 5 6 9 5 5 6", "1 1 5 2 3 3 8", "3 6 9 6 8 7 4 6 3", "8 9 9 6 1 4 3 4", "1 0 2 0 2 1 3 3 3 3 3", "9 3 3 0 1 4 7 8", "9 9 8 5 6 7 1 2 3 0 1 0", # alphabets, expecting that 9 is close to letters "a t g q e h 9 u f", "e q y u o i p s", "q o 9 p l k j o k k o p", "h g y i u t t a e q", "i k d q r e 9 e a d", "o p d g 9 s a f g a", "i u y g h k l a s w", "o l u y a o g f s", "o p i u y g d a s j d l", "u k i l o 9 l j s", "y g i s h k j l f r f", "i o h n 9 9 d 9 f a 9", ] class CBOW(keras.Model): def __init__(self, v_dim, emb_dim): super().__init__() self.v_dim = v_dim self.embeddings = keras.layers.Embedding( input_dim=v_dim, output_dim=emb_dim, # [n_vocab, emb_dim] embeddings_initializer=keras.initializers.RandomNormal(0., 0.1), ) # noise-contrastive estimation self.nce_w = self.add_weight( name="nce_w", shape=[v_dim, emb_dim], initializer=keras.initializers.TruncatedNormal(0., 1.)) # [n_vocab, emb_dim] self.nce_b = self.add_weight( name="nce_b", shape=(v_dim,), initializer=keras.initializers.Constant(0.1)) # [n_vocab, ] self.opt = keras.optimizers.Adam(0.01) def call(self, x, training=None, mask=None): # x.shape = [n, skip_window*2] o = self.embeddings(x) # [n, skip_window*2, emb_dim] o = tf.reduce_mean(o, axis=1) # [n, emb_dim] return o # negative sampling: take one positive label and num_sampled negative labels to compute the loss # in order to reduce the computation of full softmax def loss(self, x, y, training=None): embedded = self.call(x, training) return tf.reduce_mean( tf.nn.nce_loss( weights=self.nce_w, biases=self.nce_b, labels=tf.expand_dims(y, axis=1), inputs=embedded, num_sampled=5, num_classes=self.v_dim)) def step(self, x, y): with tf.GradientTape() as tape: loss = self.loss(x, y, True) grads = tape.gradient(loss, self.trainable_variables) self.opt.apply_gradients(zip(grads, self.trainable_variables)) return loss.numpy() def train(model, data): for t in range(2500): bx, by = data.sample(8) loss = model.step(bx, by) if t % 200 == 0: print("step: {} | loss: {}".format(t, loss)) if __name__ == "__main__": d = process_w2v_data(corpus, skip_window=2, method="cbow") m = CBOW(d.num_word, 2) train(m, d) # plotting show_w2v_word_embedding(m, d, "./visual/results/cbow.png")
import tensorflow as tf from tensorflow import keras from utils import process_w2v_data from visual import show_w2v_word_embedding tf.enable_eager_execution() #输入语料库,包含数字和字母,很明显9混入了字母区,那么在向量图中会有所体现 corpus = [ # numbers "5 2 4 8 6 2 3 6 4", "4 8 5 6 9 5 5 6", "1 1 5 2 3 3 8", "3 6 9 6 8 7 4 6 3", "8 9 9 6 1 4 3 4", "1 0 2 0 2 1 3 3 3 3 3", "9 3 3 0 1 4 7 8", "9 9 8 5 6 7 1 2 3 0 1 0", # alphabets, expecting that 9 is close to letters "a t g q e h 9 u f", "e q y u o i p s", "q o 9 p l k j o k k o p", "h g y i u t t a e q", "i k d q r e 9 e a d", "o p d g 9 s a f g a", "i u y g h k l a s w", "o l u y a o g f s", "o p i u y g d a s j d l", "u k i l o 9 l j s", "y g i s h k j l f r f", "i o h n 9 9 d 9 f a 9", ] class SkipGram(keras.Model): def __init__(self, v_dim, emb_dim): super().__init__() self.v_dim = v_dim self.embeddings = keras.layers.Embedding( input_dim=v_dim, output_dim=emb_dim, # [n_vocab, emb_dim] embeddings_initializer=keras.initializers.RandomNormal(0., 0.1), ) # noise-contrastive estimation self.nce_w = self.add_weight( name="nce_w", shape=[v_dim, emb_dim], initializer=keras.initializers.TruncatedNormal(0., 1.)) # [n_vocab, emb_dim] self.nce_b = self.add_weight( name="nce_b", shape=(v_dim,), initializer=keras.initializers.Constant(0.1)) # [n_vocab, ] self.opt = keras.optimizers.Adam(0.01) def call(self, x, training=None, mask=None): # x.shape = [n, ] o = self.embeddings(x) # [n, emb_dim] return o # negative sampling: take one positive label and num_sampled negative labels to compute the loss # in order to reduce the computation of full softmax def loss(self, x, y, training=None): embedded = self.call(x, training) return tf.reduce_mean( tf.nn.nce_loss( weights=self.nce_w, biases=self.nce_b, labels=tf.expand_dims(y, axis=1), inputs=embedded, num_sampled=5, num_classes=self.v_dim)) def step(self, x, y): with tf.GradientTape() as tape: loss = self.loss(x, y, True) grads = tape.gradient(loss, self.trainable_variables) self.opt.apply_gradients(zip(grads, self.trainable_variables)) return loss.numpy() def train(model, data): for t in range(2500): bx, by = data.sample(8) loss = model.step(bx, by) if t % 200 == 0: print("step: {} | loss: {}".format(t, loss)) if __name__ == "__main__": d = process_w2v_data(corpus, skip_window=2, method="skip_gram") m = SkipGram(d.num_word, 2) train(m, d) # plotting show_w2v_word_embedding(m, d, "./visual/results/skipgram.png")
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。