赞
踩
Embeddings 使用的是 JinaEmbeddings。
1 第一次存入数据库:
from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_community.embeddings import JinaEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms import Tongyi from langchain_core.runnables import RunnableParallel, RunnablePassthrough import os os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b" llm = Tongyi() from langchain_community.document_loaders import UnstructuredURLLoader urls = [ "https://en.wikipedia.org/wiki/Android_(operating_system)" ] loader = UnstructuredURLLoader(urls=urls) documents = loader.load_and_split() print(documents) embeddings = JinaEmbeddings( jina_api_key="jina_c5d02a61c97d4d79b88234362726e94aVLMTvF38wvrElYqpGYSxFtC5Ifhj", model_name="jina-embeddings-v2-base-en" ) # # 第一次存入本地 vectorstore = FAISS.from_documents(documents, embeddings) vectorstore.save_local("faiss_index") # # 从本地加载 # vectorstore = FAISS.load_local("faiss_index", embeddings) retriever = vectorstore.as_retriever() template = """Answer the question based on the context below. If the question cannot be answered using the information provided answer with "I don't know" Context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) output_parser = StrOutputParser() setup_and_retrieval = RunnableParallel( {"context": retriever, "question": RunnablePassthrough()} ) chain = setup_and_retrieval | prompt | llm | output_parser print(chain.invoke("what is android"))
2 第二次从本地加载:
from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser from langchain_community.embeddings import JinaEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.llms import Tongyi from langchain_core.runnables import RunnableParallel, RunnablePassthrough import os os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b" llm = Tongyi() from langchain_community.document_loaders import UnstructuredURLLoader # urls = [ # "https://en.wikipedia.org/wiki/Android_(operating_system)" # ] # loader = UnstructuredURLLoader(urls=urls) # documents = loader.load_and_split() # print(documents) embeddings = JinaEmbeddings( jina_api_key="jina_c5d02a61c97d4d79b88234362726e94aVLMTvF38wvrElYqpGYSxFtC5Ifhj", model_name="jina-embeddings-v2-base-en" ) # # 第一次存入本地 # vectorstore = FAISS.from_documents(documents, embeddings) # vectorstore.save_local("faiss_index") # # 从本地加载 vectorstore = FAISS.load_local("faiss_index", embeddings) retriever = vectorstore.as_retriever() template = """Answer the question based on the context below. If the question cannot be answered using the information provided answer with "I don't know" Context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) output_parser = StrOutputParser() setup_and_retrieval = RunnableParallel( {"context": retriever, "question": RunnablePassthrough()} ) chain = setup_and_retrieval | prompt | llm | output_parser print(chain.invoke("what is android"))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。