赞
踩
这道题的状态方程比上一题简单一些
初始化如下
- class Solution {
- public:
- int minDistance(string word1, string word2) {
- vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1));
- for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
- for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
- for (int i = 1; i <= word1.size(); i++) {
- for (int j = 1; j <= word2.size(); j++) {
- if (word1[i - 1] == word2[j - 1]) {
- dp[i][j] = dp[i - 1][j - 1];
- } else {
- dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
- }
- }
- }
- return dp[word1.size()][word2.size()];
- }
- };
首先确认状态方程
如果第i位与第j位相同,那本次可以不用操作,dp[i][j]=dp[i-1][j-1]
如果不同,则需要增删改的操作,而增和删本质是等效的,对一个字符串删等于对另一个字符串加,所以取dp[i-1][j]和dp[i][j-1]的最小值+1。改的话则是dp[i-1][j-1]+1;取他们的最小值。
初始化则为
- class Solution {
- public:
- int minDistance(string word1, string word2) {
- vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
- for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
- for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
- for (int i = 1; i <= word1.size(); i++) {
- for (int j = 1; j <= word2.size(); j++) {
- if (word1[i - 1] == word2[j - 1]) {
- dp[i][j] = dp[i - 1][j - 1];
- }
- else {
- dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
- }
- }
- }
- return dp[word1.size()][word2.size()];
- }
- };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。