当前位置:   article > 正文

Apriori算法——关联分析规则_apriori关联规则算法

apriori关联规则算法

一、目的

通过分析商品的关联规则,将商品绑定一起,来提高商品的销售几率。
用于发现大量数据中,各组数据之间的联系。

二、概念

关联分析主要是三度概念——支持度(support),置信度(support),提升度(lift):

  1. 支持度(support)
    不同“项集”,受顾客的欢迎程度不同。支持度(Support)可以表示项集在事务中出现的概率(频率),也可以理解成顾客对某一个项集的“支持程度”。
    {X}的支持度 = {X}在事务中出现的次数 / 事务总数
  2. 置信度(support)
    置信度(Confidence)可用于衡量关联规则的可靠程度,表示在前件出现的情况下,后件出现的概率。一般来说,概率越高,规则的可靠性越强。
    {X}→{Y}的置信度 = {X,Y}的支持度 / {X}的支持度
  3. 提升度(lift)
    关联规则既有促进关系,也有抑制关系。因而,还需引入提升度(Lift)对它们进行判断。lift大于1为促进关系,lift小于1为抑制关系。
    {X}→{Y}的提升度 = {X}→{Y}的置信度 / {Y}的支持度
  4. 最小支持度
    用于筛掉那些不符合需求的项集。被留下来的项集(≥ 最小支持度),被称为频繁项集。有了频繁项集,就可以生产关联规则了。
  5. 关联规则
    关联分析是探索数据之间联系的技术,而数据之间的联系,我们用关联规则来表示,表达式为:{X}→{Y}(X 和 Y 之间不存在相同项)。
    规则有顺序之分,为了方便描述,我们把规则前面的项集叫前件,把规则后面的项集叫后件。
    假设有频繁项集 {奶茶,薯条},(这里奶茶为前件,薯条为后件),它可以生成2条关联规则:{奶茶}→{薯条}和{薯条}→{奶茶}。前者的意思是,购买“奶茶”的顾客,和购买“薯条”之间,可能存在有某种联系!

三、Apriori算法流程

要使用Apriori算法,我们需要提供两个参数,数据集和最小支持度。我们从前面已经知道了Apriori会遍历所有的物品组合,怎么遍历呢?答案就是递归。先遍历1个物品组合的情况,剔除掉支持度低于最小支持度的数据项,然后用剩下的物品进行组合。遍历2个物品组合的情况,再剔除不满足条件的组合。不断递归下去,直到不再有物品可以组合。

Python实战

1. 用到的库是mlxtend,及参数介绍

def apriori(df, min_support=0.5,  
            use_colnames=False, 
            max_len=None)
参数如下:
df:这个不用说,就是我们的数据集。
min_support:给定的最小支持度。
use_colnames:默认False,则返回的物品组合用编号显示,为True的话直接显示物品名称。
max_len:最大物品组合数,默认是None,不做限制。如果只需要计算两个物品组合的话,便将这个值设置为2
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

2.使用Apriori算法找到频繁项集

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
 
#设置数据集
dataset = [['牛奶','洋葱','肉豆蔻','芸豆','鸡蛋','酸奶'],
        ['莳萝','洋葱','肉豆蔻','芸豆','鸡蛋','酸奶'],
        ['牛奶','苹果','芸豆','鸡蛋'],
        ['牛奶','独角兽','玉米','芸豆','酸奶'],
        ['玉米','洋葱','洋葱','芸豆','冰淇淋','鸡蛋']]
        
te = TransactionEncoder()
#进行 one-hot 编码
te_ary = te.fit(records).transform(records)
df = pd.DataFrame(te_ary, columns=te.columns_)
#利用 Apriori 找出频繁项集
freq = apriori(df, min_support=0.05, use_colnames=True)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

首先,需要先将商品进行one-hot编码,编码后用boolean值表示。所谓ont-hot编码呢,直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制。比如冰淇淋只存在最后一共交易单中,其他交易中都没出现。那冰淇淋就可以用[0,0,0,0,1]来表示。

编码后的数据如下:

 冰淇淋     洋葱     牛奶    独角兽     玉米    肉豆蔻    芸豆     苹果     莳萝     酸奶     鸡蛋
0  False        True   True       False      False    True     True    False    False   True     True
1  False        True  False       False      False    True     True    False     True   True     True
2  False       False   True       False      False   False     True     True    False  False     True
3  False       False   True        True       True   False     True    False    False   True    False
4   True        True  False       False       True   False     True    False    False  False     True
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

若设定的最小支持度为0.6,那么只有支持度大于0.6的项集才能成为频繁项集,如下:

    support      itemsets
0       0.6          (洋葱)
1       0.6          (牛奶)
2       1.0          (芸豆)
3       0.6          (酸奶)
4       0.8          (鸡蛋)
5       0.6      (芸豆, 洋葱)
6       0.6      (洋葱, 鸡蛋)
7       0.6      (牛奶, 芸豆)
8       0.6      (酸奶, 芸豆)
9       0.8      (芸豆, 鸡蛋)
10      0.6  (芸豆, 洋葱, 鸡蛋)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

3.在利用Apriori得到频繁项集后如何得到关联规则

关联规则即置信度和提升度

使用mlxtend库,我们可以计算得到关联规则:

association_rules(df, metric="confidence",
                      min_threshold=0.8,
                      support_only=False):
 
参数介绍:
- df:这个不用说,就是 Apriori 计算后的频繁项集。
- metric:可选值['support','confidence','lift','leverage','conviction']。
里面比较常用的就是置信度和支持度。这个参数和下面的min_threshold参数配合使用。
- min_threshold:参数类型是浮点型,根据 metric 不同可选值有不同的范围,
    metric = 'support'  => 取值范围 [0,1]
    metric = 'confidence'  => 取值范围 [0,1]
    metric = 'lift'  => 取值范围 [0, inf]
support_only:默认是 False。仅计算有支持度的项集,若缺失支持度则用 NaNs 填充。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

整个流程的完整代码:

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
 
#设置数据集
dataset = [['牛奶','洋葱','肉豆蔻','芸豆','鸡蛋','酸奶'],
        ['莳萝','洋葱','肉豆蔻','芸豆','鸡蛋','酸奶'],
        ['牛奶','苹果','芸豆','鸡蛋'],
        ['牛奶','独角兽','玉米','芸豆','酸奶'],
        ['玉米','洋葱','洋葱','芸豆','冰淇淋','鸡蛋']]
        
te = TransactionEncoder()
#进行 one-hot 编码
te_ary = te.fit(records).transform(records)
df = pd.DataFrame(te_ary, columns=te.columns_)
#利用 Apriori 找出频繁项集
freq = apriori(df, min_support=0.05, use_colnames=True)
 
#导入关联规则包
from mlxtend.frequent_patterns import association_rules
#计算关联规则
result = association_rules(freq, metric="confidence", min_threshold=0.6)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

后续有适合的数据集,会完整做一个项目出来分享

参考了以下文章:
原文链接:
https://blog.csdn.net/h_jlwg6688/article/details/107793274
https://blog.csdn.net/weixin_53823523/article/details/119845775

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/489914
推荐阅读
相关标签
  

闽ICP备14008679号